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A method for hand-foot-
mouth disease prediction using 
GeoDetector and LSTM model in 
Guangxi, China
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Hand-foot-mouth disease (HFMD) is a common infectious disease in children and is particularly severe 
in Guangxi, China. Meteorological conditions are known to play a pivotal role in the HFMD. Previous 
studies have reported numerous models to predict the incidence of HFMD. In this study, we proposed 
a new method for the HFMD prediction using GeoDetector and a Long Short-Term Memory neural 
network (LSTM). The daily meteorological factors and HFMD records in Guangxi during 2014–2015 
were adopted. First, potential risk factors for the occurrence of HFMD were identified based on the 
GeoDetector. Then, region-specific prediction models were developed in 14 administrative regions of 
Guangxi, China using an optimized three-layer LSTM model. Prediction results (the R-square ranges 
from 0.39 to 0.71) showed that the model proposed in this study had a good performance in HFMD 
predictions. This model could provide support for the prevention and control of HFMD. Moreover, this 
model could also be extended to the time series prediction of other infectious diseases.

Hand-foot-mouth disease (HFMD) is a common viral infectious disease in children under 5 years old, which is 
commonly caused by the enteric pathogen coxsackievirus A16 (CoxA16) and enterovirus 71 (EV 71)1,2. Severe 
HFMD could be associated with serious complications, such as poliomyelitis and brainstem encephalitis, which 
may be life-threatening3. HFMD has resulted in several outbreaks throughout the world and become a public 
health issue in Asia4–7. HFMD ranked first among the notifiable infectious diseases in China in 20178. The inci-
dence and mortality rate of HFMD are particularly severe in Guangxi Zhuang Autonomous Region of China9. 
There are no specific drugs or vaccines to prevent HFMD10,11 and therefore it is essential to establish a reliable 
prediction model for the prevention of HFMD.

HFMD has obvious periodic variations, such as its peak period usually occurs during summer months in the 
northern hemisphere12. Previous studies have revealed that HFMD is closely related to meteorological condi-
tions13–16, such as the mean temperature, relative humidity, wind speed, and sunshine hours. It should be possible 
to establish models to predict the occurrence of HFMD based on these associations. The prediction model would 
enable individuals as well as hospitals and clinics formulate precautions and minimize health risks.

Numerous studies have been carried out to develop HFMD prediction models. There are three categories of 
prediction models, including linear regression, time series, and machine learning. The linear regression model was 
established by analyzing the correlations between the incidence of HFMD and the influential factors17. However, 
it is difficult to capture the non-linear association between HFMD and impacting factors and maintain the spatial 
stationary assumption over a large area18. The time series model uses the relationship in the sequential lag time 
series to predict the incidence of HFMD, such as the seasonal auto-regressive integrated moving average model 
(ARIMA)19,20. These models did not consider the relationship between HFMD and potential impacting factors. 
With the development of artificial intelligence (AI), machine learning algorithms have shown their advantages in 

1Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan 
University, Kaifeng, Henan, 475004, China. 2Institute of Urban Big Data, College of Environment and Planning, 
Henan University, Kaifeng, Henan, 475004, China. 3The Affiliated Hospital of Guangdong Medical University, 
Zhanjiang, 524001, China. 4Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan 
University, Kaifeng, Henan, 475004, China. 5Institute for Global Innovation and Development, East China Normal 
University, Shanghai, 200062, China. *email: hqsong@henu.edu.cn; yfkong@henu.edu.cn

OPEN

https://doi.org/10.1038/s41598-019-54495-2
mailto:hqsong@henu.edu.cn
mailto:yfkong@henu.edu.cn


2Scientific Reports |         (2019) 9:17928  | https://doi.org/10.1038/s41598-019-54495-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

predictions and recognitions21–23. Gradient boosting tree (GBT) and random forest (RF) were found to be capable 
of identifying both mild and severe HFMD, which is helpful for early surveillance and control in HFMD24,25. Deep 
learning methods such as Back Propagation Neural Networks (BPNN) were also adopted to predict the incidence of 
HFMD26. However, conventional machine learning methods such as BPNN cannot effectively deal with the trend 
prediction of HFMD since the temporal pattern must be taken into account when predicting infectious diseases.

To overcome the limitations mentioned above, this study proposed a HFMD prediction method using the 
GeoDetector (http://geodetector.org) and the Long Short-Term Memory Neural Network (LSTM). GeoDetector 
measures the association between input factors and dependent factors according to their temporal-spatial dis-
tributions by the indicator q-statistic (q) value, the value ∈ [0,1] increases as the association between the input 
factor and HFMD increase27. LSTM is an advanced kind of Recurrent Neural Network (RNN), which has the 
ability to learn temporal pattern and store the useful memory for a longer time. In this study, the GeoDetector 
was employed to analyze the impact of every meteorological factor and the interactive effects between different 
factors on HFMD. And then the dominant impacting factors were input into LSTM model to predict the weekly 
cases of HFMD in 14 subregions of Guangxi, China.

Results
Identification of potential impacting factors.  Figure 1 shows the contributions of 14 meteorological 
factors to the occurrence of HFMD in 14 subregions of Guangxi from 2014 to 2015. The 14 meteorological factors 
were divided into four categories, including (1) Humidity: minimum relative humidity (MIH), mean relative 
humidity (MEH), and precipitation (PR); (2) temperature: mean temperature (MET), maximum temperature 
(MAT), and minimum temperature (MIT); (3) pressure: mean pressure (MEP), maximum pressure (MAP), and 
minimum pressure (MIP); (4) wind speed: mean wind speed (MEW), maximum wind speed(MW), the direction 
of maximum wind speed (DMW), extreme wind speed (EW), and the direction of extreme wind speed (DEW). It 
can be seen that the primary impacting factor is the temperature of MIT (q = 0.23) and MET (q = 0.20), followed 
by PR (q = 0.10) and wind speed (DEW, q = 0.04; MW, q = 0.02; EW, q = 0.01; MEW, q = 0.01). This indicated that 
the q value was similar for the category of potential impacting factors, which means that they may have the similar 
contribution to the occurrence of HFMD, but does not mean that they influence the HFMD in the same way.

The interactive effect is not simply equal to the sum of the q values of the two influencing factors’ (X1 and X2) 
effects on HFMD, which is represented as q(X1 ∩ X2)28. Figure 2 shows the interactive results between potential 
influencing factors (only show a subset (q (X1 ∩ X2) > 0.20) of all the interactions due to the space limitation, entire 
results could be found in the Supplementary Fig. S1). This indicated that any two combined factors could play a 
more important role than their single effects on HFMD. The combinations of the temperatures and other factors 
had more dominated influences among all the combinations. The most four primary interactions MIT and EW 
(q = 0.30), MIT and MEW (q = 0.30), MIT and MIP (q = 0.28), and MET and MEW (q = 0.28). Taking the effects of 
both single and combined effects into consideration, MW and DEW were eliminated from the risk factors.

LSTM prediction model.  To minimize the spatial difference of the effects of meteorological conditions on 
HFMD and improve the prediction accuracy of LSTM, we developed the region-specific models for 14 subregions 
of Guangxi. The HFMD cases of the previous 80 weeks were taken as the training set to train the LSTM model, 
and the HFMD cases of the next 24 weeks were taken as the testing set to evaluate the prediction model. The 
model was saved after 5000 iterations, which was applied to predict the HFMD cases in the subsequent 24 weeks. 
We run 20 times for each model and the mean value of the runs was considered as the prediction value.

Figure 3 shows predictions of the region-specific LSTM models compared with observations in subregions 
(Beihai and Wuzhou not shown here due to the lower cases of HFMD, entire results could be found in the 
Supplementary Fig. S2). The predictions and observations had good consistence in all subregions, which indi-
cated that the region-specific LSTM models had good performance in the prediction of HFMD. To quantify 
the performance of the region-specific models, the metrics of R Square (R2) and Mean Absolute Percent Error 
(MAPE) were adopted to evaluate the performance of these models. Table 1 shows the performance of the 14 
region-specific models in Guangxi. The mean R2 and MAPE of these models was 0.60 and 0.73, respectively. 
The R2 ranges from 0.39 to 0.71 and the MAPE ranges from 23% to 131%. The region-specific model showed 
best and worst performance in Baise (R2 = 0.71, MAPE = 30.46%) and Chongzuo (R2 = 0.39, MAPE = 55.29%), 
respectively.

Figure 1.  Determinant power of the potential impacting factors of HFMD.
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Figure 2.  Interactive effects between the potential influencing factors on HFMD. The x-axis label X1 & X2 
denotes q values of X1 (blue), X2 (red), and the interaction between X1 and X2 (green).

Figure 3.  Region-specific model predictions of HFMD compared with observations in subregions. The grey 
shaded areas demote the 95% confidence interval (CI) of the predictions.
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Discussion
It has been reported that the incidence of HFMD significantly increased in recent years in China29, particularly in 
the southeast areas. This study proposed a method for predictions of the HFMD occurrence using GeoDetector 
and LSTM model.

Primary potential impacting factors for HFMD were identified by the GeoDetector. Compared with the con-
ventional regression models, the GeoDetector can not only identify non-linear associations but also detect inter-
active effects from multiple variables. According to the detection results of the GeoDetector, the q values of the 
temperatures and the precipitation are at high levels, indicating that they could be crucial influential factors of the 
HFMD. Particularly, the temperatures rank higher associations than other variables. In addition, interactions of 
temperatures and wind speeds rank highest, which means that these combinations play an important role in the 
occurrence of HFDM. This finding is consistent with previous studies13–16. Existing researches explained the asso-
ciation between climate and disease, such as wind can promote circulation and distribution of air pollutants like 
particulate matter carrying enterovirus to accelerate the transportation of HFMD30. Temperature change could 
not only influence the children’s immune capacity31, but can also influence human’s direct contact to increase the 
opportunity of HFMD transmissions, as physical activities among individuals are increasing in warm months32. 
A study in Hefei, China, has found that more than half of HFMD cases occurred on rainy days, because the wet 
weather is suitable for the HFMD virus to survive and multiply33.

Predictions of the region-specific models in 14 subregions of Guangxi proved that LSTM has the ability to 
predict the occurrence of HFMD. Numerous studies have contributed to the construction of HFMD prediction 
model18–20. However, this may be the first time to adopt the LSTM, to the best of our knowledge, to predict the 
occurrence of HFMD based on meteorological conditions. The mean R2 and MAPE of the 14 region-specific 
models was 0.60 and 0.73, respectively. Compared with previous works predicted by other methods34,35 (mean 
R2 = 0.54, mean MAPE = 1.02), indicating that the model proposed in this study had higher accuracy in the 
HFMD predictions. However, the performance of the LSTM model had spatial variations, which may be due 
to the meteorological conditions may not be the primary driving factors in some regions. For example, the 
socio-economic factors may be the primary driving forces for the incidence of HFMD36.

It should also be noted that there were some limitations in the region-specific LSTM prediction model pro-
posed in this study. The training dataset may be partial and insufficient due to the uneven distribution of hospitals, 
which may result in uncertainties for the prediction of HFMD. However, we believe that this can capture the 
temporal trends of HFMD occurrence for each subregion, because the dataset adopted in this study was collected 
continuously from most hospitals in each region. In addition, we adopted normalized and optimized method to 
minimize the prediction errors in the model construction. Moreover, the HFMD is also affected by socio-economic 
factors such as population density, rural population, and proportion of student population17,36. However, we only 
considered meteorological factors in this study, which may possibly lead to inaccurate predictions in regions where 
meteorological factors are not strong determinants of the HFMD. Taking other potential impacting factors into the 
LSTM model development would improve the prediction accuracy of HFMD occurrence.

In conclusion, this study proposed a method for predicting HFMD using GeoDetector and LSTM. The 
method was proved to be accurate and effective. Although this model cannot be applied directly in other studies 
due to the parameters in deep learning algorithm models vary with training data, the framework proposed in this 
study can be extended to predict other infectious diseases in other study areas. The capability of LSTM in dealing 
with time series issues could be applied more extensively in further researches.

Materials and Methods
Data sources.  We collected the daily historical first page data of medical records and meteorological data 
from January 2014 to December 2015 in Guangxi, China. Guangxi is located in southeast China, adjacent to the 
South China Sea. Most of it is in the subtropical zone with a monsoon humid and rainy climate (Fig. 4).

The first page data of medical records for hospitals were collected from 14 administrative regions of Guangxi, 
including patients age, source, admission time, hospital stay, diagnosis, operation, payment, and the form of 
payment. Considering the scale of the first page data, the big data technologies such as data cleaning and denois-
ing were adopted during the first page data preprocessing. The HFMD cases were defined according to the 
International Classification of Diseases B08.4. Finally, there were 170920 records of HFMD were adopted in this 
study, which were divided by 14 administrative regions and 104 weeks.

Meteorological data were obtained from the China Meteorological Data Sharing Service System. The original 
data were collected at 99 meteorological stations in and around Guangxi, including 14 meteorological factors, 
MIH, MEH, PR, MET, MAT, MIT, MEP, MAP, MIP, MEW, MW, DMW, EW, and DEW. In order to get the meteor-
ological data for each week and each region, a model equipped with iterator was built by using the Model Builder 
function of ArcMap 10 (https://desktop.arcgis.com/en/arcmap/). The main function of this model was to turn the 

Region Chongzuo Hezhou Qinzhou Liuzhou Nanning Beihai Guilin

R2 0.39 0.40 0.49 0.54 0.56 0.60 0.61

MAPE 0.55 0.52 0.43 0.23 0.92 1.32 0.35

Region Laibin Wuzhou Guigang Yulin Fangchenggang Hechi Baise

R2 0.64 0.65 0.68 0.68 0.70 0.70 0.71

MAPE 1.05 1.38 0.96 0.75 1.07 0.36 0.30

Table 1.  The performance of the region-specific models in subregions of Guangxi.
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daily station records to weekly region records by spatiotemporal Kriging interpolation method. Spatiotemporal 
interpolation method was an extended interpolation way based on spatial temporary relativity, considering the 
variables both in space and time, the estimated value of a time-space spot is calculated by the weighted sum of its 
surrounding observations. Main methods include spatiotemporal Kriging, BME (Bayesian Maximum Entropy), 
and synthesis method37. Among all the spatial interpolation ways, the spatiotemporal Kriging was a simple way 
and commonly used for the interpolation of climatic data38,39.

GeoDetector.  GeoDetector is a statistical method to detect the temporal-spatial heterogeneity. This tool has 
been widely used in many areas, such as heavy metal differentiation, land use, and disease risk factor detec-
tion40–42. The assumption is that, if a potential factor leads to a disease, this factor would show a temporal-spatial 
distribution similar to the disease. In this study, GeoDetector was adopted to identify the risk factors from the 14 
candidate meteorological factors that caused the temporal spatial stratified heterogeneity of HFMD in Guangxi 
from 2014 to 2015. Then, the impacting factors were identified according to the ranking of q values. The calcula-
tion of q is as follows:
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This equation assumes that the study area is composed of N units and is stratified into h ∈ [1, 2, 3……L] strata, 
Yi is the value of sample i, i is the whole sample population, Yhi means the value of sample i in stratum h, Yh is the 
mean value of stratum h, Y  is the mean value of population. A higher value of q indicates a stronger spatially 
stratified heterogeneity of Y; it means that factor X can explain 100 * q % of the temporal-spatial pattern of Y. 
Moreover, according to the rules and principle of GeoDetector, the X should be a categorized variable instead of 
numerical variables28,43, therefore, the continuous meteorological factors were categorized into six levels using 
k-means cluster algorithm.

Figure 4.  Location of Guangxi Zhuang Autonomous Region in China and the total number of HFMD cases 
during 2014–2015.
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LSTM neural networks.  LSTM is a special kind of RNN (Recurrent Neural Network). RNN has the ability 
to learn patterns and extract features from data that contains time series due to the special structure in con-
text layer, a hidden layer with repeated connections in neurons. LSTM has been widely used in recognitions 
of image and speech due to its high accuracy44,45. However, it remains a long-term dependency issue in RNN due 
to the exploding gradient problem resulting from gradient propagation over many layers. LSTM was designed 
to overcome this issue through cell-and-gate structure, which enables the LSTM to learn when they forget and 
update memory46. LSTM has a better performance than tradition statistical models and has been applied in pre-
dicting such as emotional state, traffic flow, and disease, especially when combined with convolutional neural 
networks47–49.

In order to learn the pattern in time series, the conventional deep feed-forward neural networks must be 
improved (Fig. 5a). The lack of connections among the nodes within the hidden layers may result in failure in 
dealing with time series problems. Therefore, RNN, a kind of neural network equipped with recurrent connec-
tions in the neurons of hidden layers, has been developed and improved50. Figure 5b,c show a basic RNN architec-
ture and unfolded architecture in time. The connections or loops can transport feedback from the previous state 
to the current state, allowing information to be passed between the consecutive temporal steps. Hence, it can be 
seen that the output not only depends on the input information, but also depends on the output of the previous 
hidden layer.

The model in Fig. 5a can be expressed mathematically as follows:

= +h f w x b( ) (2)t t1 1 1

y f w h b( ) (3)t t2 2 2= +

where xt is the input variable, ht is the temporary variable in hidden layer or hidden state; w1 and w2 are weight 
metrics from input layer to hidden layer and from hidden layer to output layer, respectively; b1 and b2 are bias 
vectors; f1, and f2 are hidden and output activation functions, respectively. The activation functions are nonlinear 
functions, making the neural networks approximate any continual nonlinear functions with any precision51.

The mathematical expressions of the feedback loop in a hidden layer are as follow equations (Fig. 5b):

h f w x w h b( ) (4)t t t t t1 1 2 1 1= + +−

y f w h b( ) (5)t t2 2 2= +

where the wt1, wt2 and w2 are weight matrices; b1, b2, f1 and f2 have the same meaning as described for conven-
tional deep feed-forward neural networks. The same weights are used at each time step to calculate the output yt.
The loop makes the ht at time t calculated not only by the input xt but also by the previous output ht−1, which is 
consistent with the unfolded RNN architecture shown in Fig. 5b. It can be seen that the temporal information is 
continuously reflected over time. The RNN is actually a very deep neural network trained using back propagation 
algorithm in time direction. However, due to the vanishing gradient or exploding gradient problems that always 
occur in very deep neural networks52, the accuracy of the RNN deteriorates quickly over a long period of time, 
which means the RNN can only store short-term memory. This is called the long-term dependency of RNNs.

The LSTM was proposed by Sepp Hochreiter and Jürgen Schmidhuber to overcome the long-term dependency 
of RNNs in 199753. For LSTM, the hidden neurons of the RNN are replaced by LSTM memory units (Fig. 6a). 
The memory units are mainly composed of three gates and one cell (Fig. 6b), which aim to control information 
flow and storage, including input gate, forget gate, output gate and memory cell. The system is determined by the 
state of these structures at each time step whether the information will be retained. Thus, the LSTM could hold 
important short-term memory for a longer period by the filtration of the memory units.

Figure 5.  Architecture of artificial neural networks. (a) Architecture of feed-forward neural network. (b) 
Architecture of RNN. (c) Architecture of RNN unfolded in time.
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The formulas for calculations in the memory unit are performed as follows:

i w x w h b( ) (6)t i t i t i1 2 1σ= + +−

f w x w h b( ) (7)t f t f t f1 2 1σ= + +−

o w x w h b( ) (8)t o t o t1 2 1 0σ= + +−

= + +−g tanh w x w h b( ) (9)t g t g t g1 2 1

c f c i g (10)t t t t t1= ∗ + ∗−

h o ctanh( ) (11)t t t= ∗

here, the input gate it, forget gate ft, and output gate ot take variable xt and previous hidden state ht−1 as inputs at 
time t, multiplied with the weight matrices wi1 w w w w x wi f f o t o2 1 2 1 2, then plus bias vectors bi, bf, bo, σ means the 
sigmoid function σ = + − −z e( ) (1 )z 1, generating the outputs of these gates range from 0 to 1. The larger output 
value is, the more information allowed, i.e., if the output value equals 1, it means the information is fully entered. 
The ct−1 means previous state of memory cell; the * indicates element-wise multiplication. tanh is a kind of acti-
vation function such that, = −

+

−

−tanh z( ) e e
e e

x x

x x . The calculations are as follows: after inputting the candidate infor-
mation gt to be stored, the actual amount stored is determined by the input gate it. Then in the Eq.(10), the final 
cell state ct depends on the sum of the amount of newly input information it * gt and the amount of forgotten 
information ∗ −f ct t 1, ht means the final output of the memory unit, controlled by the output gate ot and the final 
cell state ct. The LSTM model was constructed in Python 3.5 and was supported by modules including Tensorflow, 
Numpy, and Pandas.

Model design.  In order to identify the risk meteorological factors of the temporal-spatial distribution of 
HFMD in Guangxi, the preprocessed data were sent to GeoDetector, including weekly normalized cases and 
categorized meteorological factors in each region. In addition, the weekly cases need to be normalized in data 
preprocessing due to the collected data cannot cover all the hospitals, so the case number instead of incidence 
was adopted as dependent variable. However, the number of cases between regions had large spatial differences 
because of the uneven distribution of hospitals and population. To solve this issue, we standardizes the number 
of cases to eliminate dimension. Z-score was adopted to normalize the data. The Z-score calculation method is:

=
−

∑ −=

x x x

x x( ) (12)N i
N

i
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1
2

⁎

The environmental factors are different in different regions of Guangxi. To minimize the effect of spatial scale 
and improve the accuracy of LSTM, the region-specific model was built for each of the 14 regions of Guangxi. 
After the identification by using GeoDetector, the identified impacting factors and weekly cases in any given 
region were used as inputs and outputs, respectively. To develop the LSTM prediction model, the hospital data of 
the first 80 weeks work as the training set and the last 24 weeks work as the testing set. The number of input layers 
was equal to the number of identified factors and the neuron in hidden layer was set as 10 after experiments and 
adjustments. Because the output is a continuous variable, the output layer was set as 1 without activation func-
tions. To study the model with continuous variables, the root-mean-square error was set as loss function. 

Figure 6.  Architecture of LSTM. (a) Architecture of LSTM. (b) Architecture of LSTM memory unit.
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Backward propagation with gradient descent was used as a training algorithm to minimize the result of loss func-
tion. The optimization of the LSTM prediction model had three parts: L2 regularization, moving average model 
and exponential decay learning rate. First, in order to avoid the overfitting problem caused by the limited number 
of data, L2 regularization was adopted in loss function as shown in equations54, where c0 denotes the original loss 
function; the ε denotes the regularization rate, usually set as a very small number, such as 0.0001 in this paper; 
and ∑ ww

2 indicates the sum of squares of all the weights.

∑= −
=

c
n

y y1 ( )
(13)i

n

pi i0
1

2

∑ε
= +c

n
wc

2 (14)w
0

2

Second, the moving average model is always accompanied by a gradient decay algorithm to improve the capac-
ity and extensiveness of the final output model. Shadow variables following the variables are held and updated 
with iterations by the model to control the update rate55, after experiments, the decay rate was determined as 0.99.

= ∗ + − ∗−shadow shadow variabledecay_rate (1 decay_rate) (15)i i i1

The other important parameter in neural networks is learning rate. It has been proved that dynamic rate has a 
better effect than fixed rate in training56. Therefore, in this study, an exponential decay learning rate was adopted, 
and the mathematical mechanism is expressed in Eq. (16). A better solution is using a higher learning rate at first, 
called learning rate base, then it will decrease gradually as the increase in global step over time. The learning rate 
base was determined as 0.1, and the decay rate was 0.99 after experiments.

decay ratelearning_rate base_rate ( _ )
_
_ (16)

global step
decay steps= ∗
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