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A B S T R A C T

Along with the rapidly growing volume of public security events, efficient camera planning and configuration
methods have been one of the most crucial challenges in the video surveillance field. How to allocate different
types of surveillance cameras in an area is one of the fundamental problems; however, limited methods have
been available for generating the deployment parameters of cameras. The purpose of the paper is to explore
camera planning based on multi-source Location-based Service data. The main idea is to infer the camera
coverage by the building footprints, Point of Interests (POI) and social network record (WeChat) data, and to
optimize the camera placement using the Maximal Coverage Location Problem-Complementary Coverage
(MCLP-CC) model. Based on the probability of cell monitored with the calculation of viewshed analysis, the
candidate location with max probability is selected. The essential spots in the surveillance area are uncovered by
the combination of the kernel density estimation of POIs and WeChat data. The inference algorithm of the
location, the field of view angle, orientation yaw, and visible distance parameters are proposed using the can-
didate location and critical spots in the viewshed polygon. The MCLP-CC is modeled and implemented by Python
scripts and Gurobi software. The experiment shows that the proposed method can generate the detailed camera
parameters including location, the field of view angle, orientation yaw, and visible distance with the lower
occlusion and overlapping ratio for camera coverage. We believe that the integration of the coverage inference
and optimization methods into the existing GIS platform will promote a variety of innovative applications in the
camera planning area.

1. Introduction

In the recent decade, the growing urgent requirement for public
security creates new challenges for optimal camera planning (i.e., op-
timal camera location, coverage, orientation, etc.) in urban public
spaces or infrastructure like railway stations, shopping malls, city
squares, and residential areas (Liu, Sridharan, & Fookes, 2016; Murray,
Kim, Davis, Machiraju, & Parent, 2007). The camera planning is a
process of generating detailed parameters such as location, azimuth,
and visible distance, etc. for camera deployment (Liu et al., 2016). The
proper camera location and other configuration parameters can not
only provide cost savings with the same or higher level of utility but
also bring significant benefits to subsequent video analysis and detec-
tion tasks. In a specific public area, how to scientifically and low-costly
allocate a certain number of different types of surveillance cameras at

particular locations, improve monitoring coverage and reduce mon-
itoring blind or obscured spots and overlapped area, has become a
fundamental problem in deploying video surveillance systems.

Camera planning has received increased attention across a number
of disciplines in recent years as the widespread deployment of video
surveillance systems in urban areas (Liu et al., 2016). A large part of the
research in camera planning has been focusing on developing an ef-
fective optimization method. The traditional spatial optimization
methods, such as MCLP and its extension of BCLP (Backup Coverage
Location Problem), have been used for camera coverage optimization
(Dell'Olmo, Ricciardi, & Sgalambro, 2014; Murray et al., 2007). With
the advantage of optimization and operation research, the researchers
introduced multi-objective genetic algorithms (Kim, Murray, & Xiao,
2008), particle swarm optimization (Xu, Lei, & Hendriks, 2011), arti-
ficial bee colony algorithms (Chrysostomou & Gasteratos, 2012), etc.
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for camera placement optimization. However, camera planning can be
affected by quite a number of factors, including camera parameters
(i.e., position, orientation, etc.) and static and dynamic objects (i.e.,
buildings, people's activities hot spots, etc.) in the scene. The static
objects are the primary targets in existing camera planning method.
Unfortunately, the dynamic objects are ignored, and so far these factors
have not been fully used to camera planning in spite of their potential to
enhance planning efficiency.

In recent years, along with mobile Location-based Service (LBS)
technologies that have been rapidly developed, large amount of multi-
source LBS data can be obtained from Internet, public services and
social networks, including points of interest (POIs), mobile phone data,
social network records, building footprints, etc. These data can indicate
building occlusions and critical spots in surveillance areas. For ex-
ample, the building footprints show the wall, which will obscure the
field of view of the camera. The LBS data such as check-in data can
uncover the hotspots of crowd activities, which is also the key area
should be covered by the camera. By detecting the hotspot areas of
crowd activities, the orientation parameters of surveillance cameras can
be inferred, which can effectively improve the coverage of video sur-
veillance on the location of crowd activities in the surveillance area and
enhance the function of the video surveillance. In this paper, we pro-
pose a camera planning method using these multi-source LBS data to
infer and optimize camera coverage for area surveillance. Our process
focuses on dealing with the following two key issues identified for
camera planning: (1) camera coverage inferring. Based on the coverage
modeling and viewshed calculation, the two types of camera coverage
(circle and fan) are inferred using building footprints, POIs, and
WeChat data; (2) camera coverage optimization. The MCLP-CC
(Maximal Coverage Location Problem complementary coverage)
method is used to optimize the camera coverage by considering partial
coverage of the demand unit area using the facility service area method
in GIS. The primary aim of this study is to explore the camera planning
based on multi-source LBS data, which can be used to generate the
optimal camera configuration parameters including camera position,
orientation, radius and FOV (field of view) angle in detail.

The paper is organized as follows. Section 2 presents related works.
Section 3 proposes the methodology, including three main steps: cov-
erage modeling and viewshed calculation, coverage inferring, and
coverage optimization. The experiment with the method and the results
obtained are discussed in Section 4. Section 5 concludes the paper with
a brief summary and discussions.

2. Related works

Early work on camera planning can go back to the famous art gal-
lery problem in computational geometry field. It is the assignment of
finding the minimum number of guards in an art gallery to achieve the
maximum visual coverage at different positions (Chvatal, 1975; Murray
et al., 2007). As the subject of much theoretical work, the efficient al-
gorithm to generate an optimized camera position for area surveillance
has been the intense subject of many research areas such as visual
sensor network, multimedia, and GIS. For example, Binary Integer
Programming (BIP) methods (Gonzalez-Barbosa, García-Ramírez, Salas,
& Hurtado-Ramos, 2009), MCLP or BCLP (Murray et al., 2007), Genetic
Algorithms (Feng, Liu, & Wang, 2014; Kim et al., 2008), Particle Swarm
Optimization (Conci & Lizzi, 2009; Fu, Zhou, & Deng, 2014; Morsly,
Aouf, Djouadi, & Richardson, 2012), agent-based camera placement
method (Nam & Hong, 2014), Semidefinite Programming (Zhao, 2011),
and Distributed Mean Shift algorithm (Wang, Wu, & Long, 2013) have
been used for camera planning with different task-specific requirements
and real-world constraints. More related to our work, Liu et al. (Liu,
Sridharan, Fookes, & Wark, 2014) introduced a TDSA (Trans-Dimen-
sional Simulated Annealing) algorithm to serves as a good example to
show how to get the optimal camera locations and orientations.

However, the camera FOV angle is fixed. Hörster (Hörster & Lienhart,
2006) identified the entrances points that have a higher level of the
essence than others for coverage optimization. But the other related
spatial information such as POIs and the other key spots in an area is
not fully used in their method. A more synthetic review of the state-of-
the-art of camera planning was carried out in the literature of Costa and
Guedes (2010) and Liu et al. (2016).

Camera planning for area surveillance includes the location decision
process. It is important to determine the best facility locations among
many candidates for all of the public or private sectors (Church &
Murray, 2009). For service facilities, the location decision process aims
to identify the best facility location to get the maximal areal coverage.
The MCLP, originally defined by Church and ReVelle (1974), has often
been used for this purpose. The MCLP method assumes that the demand
is represented as a few points. These demand points are either com-
pletely covered or not by the service area of a facility. Thus, the MCLP
method is a type of binary coverage. It is widely used to site service
facilities in a series of fields, including camera placement (Murray et al.,
2007), banking facility location (Xia et al., 2010), police patrol areas
(Curtin, Hayslett-McCall, & Qiu, 2010), Wi-Fi equipment (Lee &
Murray, 2010), urban fire stations (Murray, 2013; Yao, Zhang, &
Murray, 2019), medical drone launch sites (Pulver & Wei, 2018), etc. As
the binary coverage of the demand with the facility, the MCLP method
ignores the partial coverage of the polygon demands by the service
area, and it is found that the modeling results depend on the scale and
unit definition (e.g., Modifiable Areal Unit Problem, or MAUP)
(Murray, 2018; Wong, 2009). To consider partial coverage, a number of
MCLP extensions including MCLP-implicit, MCLP-explicit, MCLP-Com-
plementary Coverage (MCLP-CC) were introduced (Murray, Tong, &
Kim, 2010; Tong, 2012). For example, by the combination of point-
oriented or area-oriented demand, Tong and Wei (2017) proposed a
new integrated model named MCLP-Mixed Representation (MCLP-MR).
Wei's studies (Wei, 2016) indicated that the MCLP-CC model can get the
largest facility coverage with reasonable computational efforts.

As another variable of the MCLP method, coverage model defini-
tion, namely, how do define the camera coverage area, is another key
problem in camera planning. Mavrinac and Chen (2013) classified the
coverage models into geometric coverage models and topological
models. The former models the physical area or volume of the camera
scene which can be inferred with the camera and the scene parameters.
The latter describes the topology of mutual coverage overlap for a
multi-camera system to track moving targets. Some of the previous
studies had used disc/circle shape or viewshed polygon to describe the
camera coverage (Liu et al., 2016). This is not an issue when omni-
directional cameras are used for surveillance. However often times, the
perspective cameras are mainly used to reduce building occlusion and
construction costs. A number of researchers have attempted to use the
isosceles triangle or fan shape, but many of them have a fixed angle.
Wang et al. (Wang, Liu, Zhang, & Wang, 2017) introduced a coverage
inference algorithm for the camera based on multistage grid subdivision
by considering obstacles in the scene, but the dynamic objects in the
scene such as people's activities are not fully utilized to infer the camera
coverage. The importance and the hot spots of the people's activities as
the key monitor target of the camera in an area can be indicated by the
multi-source LBS data such as building footprints, POI, and social net-
work data which could be collected on the internet.

In summary, there are a number of methods for camera planning in
the area, and the MCLP-related models have been used to site service
facilities in a range of fields. The review of existing literature indicates
that limited effort has been made in integrating different camera
parameters such as camera location, the field of view angle, orientation
yaw, and visible distance with the lower occlusion and overlapping
ratio in camera planning. To tackle this issue, the building footprints,
the POIs, and the social network records data and the MCLP-CC model
are used to infer and optimize the camera coverage in this study.
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3. Methodology

This section proposes a general method for camera coverage in-
ferring and optimization method as shown in Fig. 1. We emphasize the
generation of multiple camera parameters including location, FOV
angle, orientation azimuth, and visible distance to support camera
configuration and deployment through optimization. We envision that
more and more multi-source LBS data is valuable for camera coverage
inference. Our method consists of two main parts: the camera coverage
inferring and the coverage optimization. The four types of data such as
building footprints, surveillance area boundary, POIs, and Tencent
WeChat records are the input data.

3.1. Coverage modeling and monitored probability calculation

As required by the MCLP optimization method, the camera coverage
model must be formulated first as the service area of the facility in
MCLP, which could be inferred by the multi-source LBS data. The scene
captured by each camera corresponds to the real-world area. The
camera's field of view can be determined according to the intrinsic and
external parameters of the camera. Ordinary surveillance cameras in-
clude omnidirectional cameras, perspective cameras, and Pan-Tilt-
Zoom (PTZ) cameras. To simplify the analysis, we ignore the time factor
of the pan-tilt-zoom action of PTZ camera and assign it as an omni-
directional camera.
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Probability of cell monitored 
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cell  in all points
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Fig. 1. The camera coverage inferring and optimization method.
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The omnidirectional cameras could cover the complete area within
a certain distance when the monitoring area is unobstructed. On the
two-dimensional plane, the omnidirectional camera theoretical field of
view is a circular area with the camera position as the center (P) and the
visible distance as the radius (R) (see Figure2b). The perspective cam-
eras are usually set up to a fixed orientation and angle of the surveil-
lance area. Its planar field of view is a fan shape as Fig. 2a shows. The
fan parameters include: (1) P is the fan vertex, i.e., the camera position;
(2) R is the fan radius, i.e., the farthest visible distance in the video
image; (3) d is the fan azimuth angle, i.e., the angle from the north
direction to the principal optic axis in a clockwise direction; and (4) θ is
the fan angle, i.e., the horizontal angle for the camera FOV. It can be
seen that in the process of video surveillance optimization, both types
of cameras need to infer their mounting position and visible distance. In
addition, it is also necessary to determine the orientation and horizontal
viewing angle of the perspective cameras.

The surveillance cameras in an area are usually mounted in a fixed
position with higher visibility. In GIS, Viewshed analysis is often ap-
plied to calculate the visible area of the point. There are a number of
traditional viewshed algorithms including inter-visibility based on the
LOS (line of sight), the reference plane algorithm, and the Xdraw al-
gorithm, etc. (Floriani & Magillo, 2003). The data used in these algo-
rithms is often the terrain models such as digital elevation model
(DEM). However, it is the issue that there is mainly occlusion between
the buildings in the urban surveillance area. We utilize the shadow-
casting algorithm by the line of sight for resolving the buildings oc-
clusion problem to calculate the cell viewshed. The shadow-casting

algorithm is used to compute the dungeon area that is visible to the
player in the roguelike game (Lippert, 2011). In our study, the sur-
veillance area is rasterized with cells, and the buildings are marked as
obstacle cells. To overcome the problem with the multiple visits of the
same cells, the shadow-casting recursion algorithm is used to find
visible cells by the line of sight (LOS) method. The algorithm divides
the plane into eight octants and scans cells row-by-row or column-by-
column to find visible cells. When the scan encounters a blocked cell,
the new scan process is recursively initiated in the next row or column
of the current row or column. During each scan, the cell visibility is
determined by the start LOS and end LOS (Bergström, 2017). By ex-
ecution of the shadow-casting recursion, the viewshed cell set of the
specific location is generated within the max visible distance.

Based on cell viewshed calculation, the probability of cell monitored is
proposed to indicate the cell visibility. It is defined as the probability that
each cell in the area is monitored by other cells. The formula is as follows:

= =
=

P g D c n c v g VS i g( | ) / , ,g D g i

n
i i1 (1)

where P(g|D) is the probability of cell monitored, cg is the cell counts
where the cells are covered by the other cell's viewshed VSi, nD is the total
cell numbers of the surveillance area, and vi is the value of cell g in VSi, if g
is visible then vi= 1, else vi= 0. The probability of each cell monitored in
the area is calculated using Formula (1), and then converted into point
data as PPs (Probability Points). Each cell's viewshed VSi is converted into
viewshed polygon as VPs (Viewshed Polygons). These two data are used as
the input data of camera coverage inferring procedure.

3.2. Camera coverage inferring

Following the definition of the coverage model and the viewshed
analysis, the camera coverage parameters including camera location,
FOV angle, orientation, and visible distance can be inferred, and the
camera monitoring area is generated. We determine camera field of
view parameters first, and then generate the coverage area or polygon
using these parameters. For the omnidirectional camera, the camera
location is the circle center (P) which could be selected from the PPs by
comparing the probability of cell monitored. Once P is located and
marked, a corresponding viewshed polygon, VPi, is selected to calculate
its roundness index using the formula rni = 4sπ/l2, where rni is the
roundness index of the viewshed polygon, s is the polygon area, l is the
polygon perimeter (Mathworks, 2018). If the rni is greater than 0.90,
the object is circular in shape. After the circular viewshed polygon is
selected, the camera coverage can be generated as the circle by buf-
fering the P with max visible distance.

To infer the FOV parameters of the perspective camera such as fan
vertex, angle, radius, and azimuth include more steps. The camera lo-
cation is also the fan vertex (P) which could be determined by the same
method of the omnidirectional camera. Then the important spot within
the corresponding viewshed polygon should be identified by the static
or dynamic objects in an area. In this study, we collected the POI and
social network record data from the LBS service. A POI is a point lo-
cation containing the information about name, address, etc., which can
indicate the static objects such as entrance, gate and other hot spots.
The social network record data, WeChat (similar to Twitter) data in this
case, could uncover the dynamic objects such as people's activity hot
spots. The POIs and WeChat records are points data, whose density can
be estimated by the KDE analysis. To combine the two types of data, the
raster weighted overlay method is used by normalizing the KDE values.
The formula is as kvall = ∑i=1

2wivi, where kvall is the combination of two
KDE values, wi is the weight, and vi is the nondimensionalization KDE
value. Then the raster data is converted into CPs which indicate the cell
monitored importance. The CPi could be marked using the spatial
within relationship query method by the corresponding viewshed
polygon VPi. Upon the completion of the above steps, the fan para-
meters could be inferred using Algorithm 1 as follows.

Fig. 2. 2D coverage model of the camera.

Fig. 3. The fan coverage inference algorithm example.
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As can be seen from the algorithm above, the visible distance R is
determined by the intersection of the viewshed polygon boundary and
the vector z from camera location P to the important point CPi within
the viewshed polygon. The two angles, q1 and q2 are calculated by in-
crement or decrement according to a certain step a starting with the
azimuth of vector z and ending with increment or decrement of 90°. The
distance d between P and intersection calculation is similar to the
above. The angle expansion is broken where the d is less than R by
taking into account the occlusion of the building to the viewshed. The
FOV angle and the camera orientation is determined by the discrepancy
and bisector between q1 and q2. Fig. 3 shows the algorithmic process,
where R= 48.54 m, P is the camera location, F is the point CPi with
max kvall in the viewshed (red lines) of cell P, lf is the angle q1(54°), rf is
the angle q2(42°), and the angle step a is 2°. The inferred fan FOV angle
f= 96°, and the camera orientation yaw is the direction of angle f bi-
sector (186°). Once the perspective camera parameters had been
decided upon, the fan coverage of the camera could be generated as the
Fig. 3 shows (magenta lines) by the Bresenham line and circle drawing
algorithm (Hughes et al., 2014).

The candidate camera inference process is shown in Fig. 4. After the
probability of cell monitored (P) of all the cells are calculated and
converted to PPs, the PPi with the largest P value in all PPs is selected,
and the viewshed polygon (VPi) of the PPi is retrieved. Then the point
IPi with the max kv value covered by the VPi is determined (Fig. 4a).
The roundness index of VPi (rni) is calculated. If rni is greater than 0.9,
the PPi is the candidate position of the omnidirectional camera. We can
get the intersection point of the line from PPi to IPi and the VPi, and the
distance from PPi to the intersection point is the circle radius. We delete
all PPs and IPs covered by the circular FOV (Fig. 4b). Otherwise, the
point is the candidate position of the perspective camera, on the basis of
the PPi, IPi, and VPi (Fig. 4c), the parameters such as the radius, azi-
muth, and angle of the fan FOV are inferred using Algorithms 1, and all
the PPs and IPs contained in the fan FOV are deleted (Fig. 4d). The
algorithm does not need to set the threshold. The selection of PPi and IPi

is based on the rank of the monitored probability and kv value. By se-
lecting the PPi with the max P value and its corresponding VPi from the
remaining PPs, the IPi with max kv value of the IPs covered by the VPi is
queried. This process is repeated until the PPs set is empty, and the full
coverage of the surveillance area is completed, the candidate camera
positions and parameters are inferred. In order to avoid local optimums,
the PP outside the neighbourhood range of the specific PPi is pre-
ferentially searched, and the coverage ratio is reduced to 90% in order
to decrease the variable size of the optimizing model.

3.3. Camera coverage optimization

As the two types of camera coverage, circle and fan are generated,
and the service area of cameras is determined subsequently. Then the
camera placement could be optimized using the MCLP-CC model. The
model is outlined in detail by Tong (2012) and is briefly summarized as
follows:

Maximize
i

i
(2)

Subject to

b x ii
j N

ij j
i (3)

w ii i (4)

x p
j

j
(5)

x j{0, 1}j (6)

where i is the index for demand unit, i.e., the monitored point, cell or
polygon, j is the index for potential camera locations, wi is the expected
service at point i, p is the number of cameras to site, λi is the total
number of service received by i, the bij is the amount of service provided
to i by the camera j, and Ni is the set of the cameras that are able to
provide some service to i.

To obtain the parameters of the MCLP-CC method, the demand unit
should be determined first. As Tong and Wei (2017) suggested that the
partial coverage should be considered. Thus, the difference overlay is
executed with the surveillance area polygon and the building footprint
polygon to get the demand region for camera surveillance. The fishnet
polygon of rectangular units for the demand region is created by the
rectangle length and width parameters. The fishnet polygons are taken
as the continuous demand unit, which shows the complete or partial
coverage by the facility service area. When determining the demand
unit and inferring the coverage circle or fan polygon of the camera, the
polygon intersecting overlay is calculated to model MCLP-CC and ob-
tain the parameters of MCLP-CC method including the total number of
services received, the amount of service provided by the camera, the
cameras set that can provide some service to demand, etc. The final
stage of the method is the MCLP-CC calculation and the camera cov-
erage optimization solution founding. As a result, the camera is con-
figured with higher coverage ratio, lower overlap rate, and occlusion

Algorithms 1: Perspective Camera Coverage Parameters Inference

Input: camera location P, viewshed polygon VPi, the important cell CPi, angle incremental step a

Output: coverage parameters including fan vertex, FOV angle, visible distance, azimuth yaw

Process:

Generate vector z from P to CPi, record the azimuth angle of z as y

Intersect z and VPi, obtain the intersection M

Calculate distance R from P to M as visible distance

For ii in (0, 90/a) step 1

Chang angle from y by add(as q1) and subtract(as q2) the multiple of a with ii

Find the intersection N from P to CPi along with angle q1 and q2

Calculate distance d from P to N

If d < R then record the angle q and break

Calculate the azimuth yaw by the angle bisector between q1 and q2

Calculate the FOV angle by the discrepancy between q1 and q2
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Fig. 4. The example of the potential camera inference process.

Fig. 5. Case study area with POIs, WeChat records and demand units shown.
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rate, and detailed parameters including location, FOV angle, visible
distance, and camera orientation.

4. Experiment and results

4.1. Data collection and processing

We used the building footprint data, POI data, and social network
record (WeChat) data from online web services for LBS including Baidu
Map and Tencent Easygo platform. The building footprints indicate the
building area in 2D plan map, which can be collected through the visual
interpretation of high-resolution remote sensing images. Recently, these
building footprints data in a city have already been collected and up-
loaded to the online web service for LBS such as Google map, Baidu
map, and OpenStreetMap. We used the building footprint data from the
Baidu map. For POI data in the surveillance area, the LBS provided the
web service Application Programming Interface (API) to retrieve the
POI data near the user-defined location. We used Place API from Baidu
Map Open Platform (http://lbsyun.baidu.com/) to record the POI data
in study area. The fourth dataset was the real-time density information
for WeChat user. The data is recorded and visualized on the Tencent
‘Easygo’ Open Big Data Platform for the public with the real-time
crowdedness. As the largest social network platform of China, the
WeChat data could indicate that the user activities hot spot for the
dynamic object in the area. We implemented the web crawler that uses
an Easygo API (https://heat.qq.com/heatmap.php) to collect the
WeChat data at base transceiver stations of smartphones and Wi-Fi
hotspots covering the surveillance area at a specific time.

A case study in Zhengzhou, China were performed to demonstrate
the application of the introduced camera coverage inferring and opti-
mization method for the camera planning improvement and parameters
configuration of cameras. The total area of the surveillance region that
has buildings with different sizes is 0.1324 km2. The total building
footprint area is 0.0197 km2; thus the demand area for monitoring is
0.1127 km2. To get the demand units and reduce the optimization

variable counts, we divided the surveillance region into 170 squares
sub-polygons with 30 × 30 m size. We gathered the WeChat user
crowdedness data and POI data at 12:00 am, December 14, 2017, in
order to fully show the people's activities. To weaken the edge effect of
KDE, the surveillance area is expanded by half of its short side length
(273 m) to select POIs and WeChat records points. There are 639 POIs
and 242 WeChat records in the extended area(74 POIs and 55 WeChat
records in the surveillance area, see Fig. 5).

4.2. Model implementation

In the follow-up phase of the experiment, the candidate camera's
location and coverage area must be inferred by the above dataset. We
rasterized the surveillance area into raster cell with 2 × 2 m size to
refine the viewshed area, and marked the buildings cell as code 0 and
the non-buildings cell as 1. Each cell viewshed area is generated using
the shadow-casting algorithm with max visible distance 60 m. The
distance is the farthest visible distance on the cell, which the current
monitoring camera can identify the target in the image. According to
the occlusion of the camera FOV, the inferred distance is less than or
equal to 60 m. The probability of cell monitored is calculated as shown
in Fig. 6. To obtain the important spot in the cell viewshed, the KDE
values of POIs and WeChat records are calculated separately using the
bandwidth value of 50 m. The POI data indicates the critical location of
static targets such as buildings, and the WeChat data uncover the hot-
spot of the dynamic targets such as crowd. Both of them should be the
critical targets for surveillance and we consider they have the same
level of importance. As a result, these two KDE values are overlaid with
the same weight of 0.5 (see Fig. 7). If we increase the weight of the POI
or the WeChat record, the orientation parameters of a single camera
will be altered; however, the overall coverage of multiple cameras will
be changed little. The cell viewshed area, cell monitored probability,
and the combination of KDE data is converted into polygons and points.
Based on these data, we utilized the coverage inferring method in
Section 3.2 to generate the candidate camera location and its coverage
circle or fan. To eliminating the FOV with a small coverage area and a
large overlap portion, the coverage ratio of 90% is set as the break
condition of the loop process in the algorithm. In this case, a total of
107 candidate camera positions were generated (Fig. 8) with a coverage
area of 0.1016 km2.

The MCLP-CC was modeled by overlaying the candidate camera
coverage (service area) and the demand units using areal interpolating.
We developed the procedure using the Python language and the ArcPy
library in ArcGIS to formulated the MCLP-CC model. The model was
solved using Gurobi linear programming solver. We performed the
calculation on an Intel Core i7 3520M CPU @ 2.90 GHZ with 16.0 GB of
random access memory.

Fig. 6. The probability of cell monitored.

Fig. 7. The weighted overlay of POI and WeChat KDE values.

Fig. 8. The location and coverage of selected cameras and potential cameras
position with 80.02% coverage.
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4.3. Results

To reduce the optimization problem size, the amount of cameras is
set between 1 and 107 given that with 107 cameras 90.15% of the area
can be covered. The 2 circles and 105 fans are generated using the
Python scripts and ArcGIS ArcPy package. We executed the optimiza-
tion process using Gurobi solver by setting the different camera
number. As Fig. 8 shows, the 2 circles and 60 fans are configurated and
drawn on the map which the coverage ratio of the surveillance area is
80.02%. The optimization results with different camera numbers are
reported in Table 1.

To evaluate the result, the coverage, occlusion, and overlapping
ratio are defined in Formulae (7)–(9):

=CAR
Area Inner CP Area CP BF

S S
( ( )) (( ) ( ))

( )
i i j

a b (7)

=COR
Area Inner CP BF

S S
(( ( )) ( ))

( )
i j

a b (8)

=CVR
S Area Inner CP

Area Inner CP
( ( ( )))

( ( ))
i CP i

i

i

(9)

where CAR is the coverage ratio of the cameras, COR is the occlusion

Table 1
Optimization process of different counts of cameras.

Camera numbers Coverage ratio(%) Objective (m2) Iterations Time (s) Camera numbers Coverage ratio(%) Objective (m2) Iterations Time (s)

1 10.00 11,276 192 0.0070 32 64.95 73,200 260 0.0220
2 17.75 20,011 198 0.0070 33 66.25 74,666 267 0.0220
3 20.43 23,023 212 0.0120 34 66.51 74,968 287 0.0240
4 22.99 25,916 203 0.0170 35 66.79 75,283 294 0.0220
5 26.02 29,331 205 0.0160 36 67.42 75,987 291 0.0250
6 28.58 32,216 209 0.0150 37 68.55 77,260 283 0.0260
7 30.87 34,798 225 0.0160 38 68.55 77,260 284 0.0240
8 33.24 37,463 220 0.0190 39 69.24 78,045 295 0.0350
9 35.40 39,900 208 0.0150 40 69.98 78,874 314 0.0230
10 37.52 42,290 222 0.0160 41 71.13 80,166 296 0.0260
11 39.46 44,472 232 0.0160 42 71.06 80,096 304 0.0230
12 40.96 46,166 223 0.0250 43 71.81 80,934 299 0.0230
13 42.91 48,361 206 0.0140 44 72.30 81,486 295 0.0230
14 44.58 50,247 214 0.0150 45 72.63 81,858 310 0.0250
15 46.17 52,035 207 0.0150 46 72.95 82,221 316 0.0240
16 49.28 55,548 211 0.0140 47 73.94 83,334 296 0.0220
17 49.43 55,713 206 0.0150 48 73.94 83,334 289 0.0220
18 50.95 57,429 207 0.0140 49 74.11 83,529 311 0.0230
19 52.31 58,958 218 0.0160 50 74.41 83,870 305 0.0270
20 53.46 60,250 233 0.0180 51 74.76 84,257 302 0.0270
21 56.51 63,691 222 0.0170 52 75.42 85,007 286 0.0230
22 56.27 63,424 228 0.0170 53 75.70 85,325 300 0.0270
23 57.43 64,724 237 0.0140 54 76.32 86,022 306 0.0210
24 58.19 65,580 245 0.0200 55 76.32 86,018 314 0.0320
25 59.11 66,622 258 0.0180 56 77.13 86,931 331 0.0700
26 60.25 67,910 251 0.0190 57 78.74 88,746 364 0.0450
27 61.19 68,962 256 0.0200 58 77.69 87,566 308 0.0390
28 61.56 69,387 258 0.0210 59 79.02 89,061 390 0.0450
29 62.62 70,575 261 0.0200 60 79.46 89,557 314 0.0650
30 63.72 71,814 268 0.0260 61 79.56 89,668 322 0.0370
31 64.23 72,392 265 0.0300 62 80.02 90,186 369 0.0440
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Fig. 9. The overlap (CVR), coverage (CAR), and occlusion (COR) ratio graph for different number of cameras.
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ratio of camera coverage by the buildings, CVR is the overlapping ratio
of the cameras, CPi is the coverage fan or circle of camera i, BFj is the jth
building footprint polygon, Sa, Sb, and SCPi is the area of the surveillance
region, building footprints polygon; The coverage fan or circle of
camera i. Inner and Area are the functions to obtain the coverage
polygon CPi inside the surveillance region and its area value. It can be
illustrated from Fig. 9 that as the number of cameras grows, the overall
trend of CAR, COR, and CVR value increase synchronously. Their max
values are 90.15%, 1.20%, and 49.43% respectively as the number of

cameras is 107. It is apparent that the COR is very small, and what
stands out in this figure is the rapid growth of the CAR but the slowly
increasing of the other two ratios, especially the COR. It is the in-
evitable result that our method defined the two types of coverage model
including circle and fan instead of the circle only and utilized the multi-
source LBS data including building footprints, POI, and WeChat data to
infer the camera coverage.

We used the same camera location and visible distance parameters
and calculate the ratio of the circle coverage models, i.e., all the
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Fig. 10. The occlusion ration of two types of coverage with the same coverage ratio.
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Fig. 11. The overlapping ration of two types of coverage with the same coverage ratio.

Table 2
Statistical results of CAR, COR, and CVR for each coverage type.

Coverage type CAR (%) COR (%) CVR (%)

Ave Min Max Dev Ave Min Max Dev Ave Min Max Dev

Inferred coverage 70.16 10.0 90.15 18.96 0.77 0.27 1.20 0.28 31.97 0 49.43 13.43
Circle coverage 88.54 10.0 99.71 18.90 14.43 0.27 17.44 4.34 205.48 0 381.42 114.86
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cameras are the omnidirectional camera. Then we compared the results
with our inferred coverage. The graphs in Figs. 10 and 11 show a sig-
nificant discrepancy between the COR and CVR values of two types of
camera coverage with the same CAR value. The trend of COR and CVR
is same, i.e., as the value of circle coverage grow rapidly, the value of
inferred coverage increases slowly. Table 2 presents the summary sta-
tistics for COR and CVR of two types of coverage. There are 13.66% and
16.24% discrepancy between average and max occlusion ratio, and
173.51% and 331.99% discrepancy in average and max overlapping
ratio. The CAR is lower than circle coverage, and the main reason be-
hind it is there is a multitude of occlusion areas by the buildings with
circle coverage. This indicates that the overall occlusion and over-
lapping ratio of the inferred coverage reported significantly less than
the circular coverage with the same numbers of cameras.

5. Discussions

5.1. Coverage inference with different cell size

In this study, the line-of-sight algorithm is applied to find the
viewshed by discretizing the surveillance area into grid cells. The cell
size is a key parameter, which may cause MAUP problems and produce
different optimization results. To analyze the effect of the raster cell size
on the camera coverage inference and optimization, we infer the
camera parameters with three raster cell sizes such as 2 m, 4 m, and
6 m. From the perspective of a single camera, as the cell size increases,

the inferred camera parameters change accordingly. (1) FOV for om-
nidirectional cameras. The expansion of the cell size will result in a
reduction of the roundness index of the view polygon. As shown in
Fig. 12a, at 2 m × 2 m, the roundness index is 0.9852, and as the cell
size is 4 m and 6 m, it is 0.9651 and 0.9465, respectively. The inferred
radius of the circular FOV is also gradually reduced, which is 58.41 m,
56.66 m, and 53.94 m, respectively, resulting in a gradual decrease in
the coverage area. (2) FOV for the perspective cameras. The enlarge-
ment of the cell size causes the counts of cells covered by building to be
reduced, which will increase in the fan angle. As shown in Fig. 12b,
with the cell size from 2 m, 4 m, and 6 m, the inferred fan angle in-
creases from 40° to 46° and 48°, respectively. The fan radius also de-
creased from 59.23 m to 58.41 m and 58.23 m. As the difference of the
cell centre, the fan azimuth also changes slightly. Similar to the circular
field of view, although the fan angle is increasing, the fan radius is
gradually reduced, the coverage area is decreased from 1775.66 m2 to
1726.83 m2 and 1716.20 m2. It can be seen that as the cell size expands,
the location of selected PP and IP point changes slightly, and the
viewshed error increases. The boundary of the inferred circular or fan
FOV and the view polygon are more mismatched, which in turn leads to
a reduction in the inferred coverage area.

The maximum coverage optimization was performed using the
MCLP-CC model based on the inferred camera parameters. The differ-
ence of the average CAR, CVR, and COR between three cell size are
highlighted in Fig. 13. With the expansion of cell size, the average CAR
increased from 70.16% to 74.34% and 75.32% with 90% coverage.

Fig. 12. The inferred FOV and parameters with different cell size.
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Since the coverage area of a single camera is decreasing, more sur-
veillance cameras are needed in the case of obtaining higher coverage.
At 4 m and 6 m cell size, there are 136 and 150 cameras to cover the
90% of surveillance area. Thus, the CVR and COR are also increased,
the average CVR is increased from 31.97% to 50.95%, and the average
COR increased from 0.77% to 1.55%.

Comparison of coverage areas for optimization results with different
cell sizes is based on the Generalized Intersection over Union (GIoU)
ratio proposed by Rezatofighi et al. (2019). The GIoU is an indicator for
evaluating detection errors in the field of object detection, which is
defined in Formulae (10)–(11):

=GIoU IoU Area C A B
Area C
( )

( ) (10)

=IoU Area A B
Area A B

( )
( ) (11)

where A, B is the polygon, which means the union coverage area of the
optimized cameras with corresponding cell size, IoU is the intersection
over union ratio of the A and B, C is the smallest convex hull that en-
closes both A and B. GIoU ranges from −1 to 1. It is an improvement of
the IoU, which not only reflects the overlap area of the two optimization
results but also describes the degree of separation. Fig. 14 illustrates the
GIoU and IoU ratio of coverage area between 2 m and 4 m or 6 m cell
size. In general, with the expansion of the cell size, the GIoU is lower
when the number of cameras is less than 10, and the minimum values
are 0.08 and − 0.09 when the cell of 4 m and 6 m is compared with the
cell of 2 m. In the case of an increasing number of cameras, GIoU has
shown a steady increasing trend. At 107 cameras, the GIoU is 0.59 and
0.60 at 4 m versus 2 m and 6 m versus 2 m. With a small number of

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m6m4m2

O
cc

lu
si

on
 r

at
io

(C
O

R
)

C
ov

er
ag

e(
C

A
R

) 
or

 o
ve

rl
ap

pi
ng

(C
V

R
) 

ra
ti

o

Raster Cell Size

CAR CVR COR

Fig. 13. The difference of average CAR/CVR/COR with three cell size.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.2

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101

In
te

rs
ec

ti
on

 o
ve

r 
U

ni
on

(I
oU

)

G
en

er
al

iz
ed

 I
nt

er
se

ct
io

n 
ov

er
 U

ni
on

(G
Io

U
)

Number of Cameras

GIoU1 GIoU2 IoU1 IoU2

Fig. 14. The GIoU and IoU graph with different cell size. GIoU1 and IoU1 is 4 m × 4 m versus 2 m × 2 m，GIoU2 and IoU2 is 6 m × 6 m versus 2 m × 2 m.

Z. Han, et al. Computers, Environment and Urban Systems 78 (2019) 101396

11



cameras, the IoU of the optimization result is smaller as the cell is en-
larged. For example, for a single camera, the IoU with a 4 m versus 2 m
and 6 m versus 2 m is 0.89 and 0.39 respectively. However, as the
number of cameras increases, the IoU tends to be stable. At 107 cam-
eras, the IoU of the two sizes of cells has reached 0.80. Generally, the
larger the cell size, the smaller the GIoU and IoU are when the camera
number is small. It is shown that different cell sizes will affect the
coverage optimization results. The smaller the number of cameras, the
more obvious the difference, and the larger cells will result in a lower
GIoU ratio; as the number of cameras increases, the optimization results
polygons are constantly increasing in overlapping area and their degree
of separation is decreasing.

5.2. Coverage optimization with different importance of the demand units

From the point of maximum coverage, camera planning is the
process to optimize the candidate camera based on its coverage area; all
of the demand units are equally important. In this study, the key

locations of the surveillance area are uncovered from the POI and
WeChat data. It also reflects the importance of different locations to
some extent in the surveillance area. To reflect the importance of dif-
ferent demand units in the optimization process, the average weighted
KDE, i.e. kvall value of the cells covered by each demand unit is cal-
culated (Fig. 15). The camera coverage optimization is performed
through the average weighted KDE value as the weight. The comparison
between the optimization result (Case52) and Section 4 result (ignoring
the importance of the demand unit, Case04) is shown in Fig. 16.

In the case of the POI and WeChat records covered with the same
camera counts, the number of Case52 is higher than Case04, the
minimum of the former is 6, and the mean is 77; while the latter has a
minimum of 4, and the mean is 69. The average difference between the
two cases is 8. It can be seen that case 52 is significantly different from
case04 in the average kvall values of cells covered by different numbers
of camera. In Case 52, this value generally shows a downward trend,
and in the case of a small number of cameras, the cells that have the
higher KDE Value are preferred in the optimization process. For

Fig. 15. The average weighted POI and WeChat KDE values of the demand units.
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example, in 1 camera, it covers the demand unit with the highest
average kvall value. The mean value of the covered cells is 26.32. As the
number of cameras increases, the value becomes smaller and tends to
be stable.

The result of Case04 is just the opposite. In general, the average kvall
values of cells covered by the camera shows a slight upward trend. The
smaller the number of cameras, the smaller the average kvall value; but
the increasing step is small. As the importance of the demand unit is
considered in the optimization, the average coverage ratio of the op-
timization result is also reduced from 70.16% of Case04 to 60.61% of
Case52; when there is only one camera, the coverage is decreased from
10.00% to 0.55%. The average coverage ratio, the numbers of POI and
WeChat records covered, and average kvall value tend to be consistent as
the number of cameras increases. It can be seen that modeling the
importance of the demand unit will have a significant impact on the
optimization result when the number of cameras is small, but it is
convergence when the number of cameras and coverage ratio is in-
creased.

5.3. Coverage inference and optimization with different times of LBS data

In Section 4, considering the characteristics of crowd activities, the
WeChat record data at 12:00 am on a weekday was selected for calcu-
lation. To analyze the influence of LBS data on the optimization results,
the two other different moments WeChat record data were selected to
infer the camera position and field of view and optimize the camera
coverage. Case A selects the same time on the rest day, which is the
WeChat record data of 12:00 am, December 16, 2017, for inference and
optimization. A total of 290 WeChat records were obtained based on
the expanded range (60 in the surveillance area). In order to analyze
the results at different times on the same day, Case B selects the off-
hours in the afternoon of the same day, which is the WeChat record
data of 18:00 pm, December 14, 2017. There are 274 WeChat records
on the expanded range (62 in the surveillance area).

The KDE were performed on the WeChat record points at two mo-
ments and overlapped with the POI KDE value. As shown in Fig. 17, the
overall distribution of combination KDE at different times has simila-
rities to some extent. The hotspot areas are distributed on the south and
east sides of the area; however, the difference between the weekday and
the rest day is more significant. According to the combination KDE of
the two cases, the camera FOV inference and coverage optimization
were carried out. In the case of coverage of 80%, it is generated 71
cameras (including 2 circles and 69 sectors, with a monitoring coverage
of 80.15%) in Case A, and 61 cameras (including 2 circles, 59 sectors,
the monitoring coverage rate is 80.30%) in Case B. The coverage area
comparison of the two cases with the results of Section 4 (Case04) is
shown in Fig. 18. It is apparent that Case A and Case B with Case04
have a higher overlapped area, and their IoU are 0.7806 and 0.7757,
GIoU is 0.5211 and 0.5042 respectively. With the upward of coverage,
the overlapped area gradually increases. It can be seen that the LBS data
will change the parameters of a single camera, but the impact on the
overall coverage is a bit small.

5.4. Coverage inference with simple geometric approach

As discussed in Section 3.1, the field of view for surveillance cam-
eras include two types of circular and fan. In previous study cases, the
viewshed polygon or fixed-angle camera are used for camera planning,
and the optimization process locates only the positions of the cameras.
(1) The viewshed polygon is an irregular polygon due to occlusion of
buildings, which is different from the FOV of the surveillance camera.
As shown in the left graph of Fig. 19, the omnidirectional camera is
selected based on the viewshed polygon. There are 714 building cells
and 701 occlusion cells in the circle FOV of the camera. Although the
circle FOV covers these cells, they cannot be monitored by the camera.
(2) The fixed-angle camera is used (middle graph of Fig. 19). As the
fixed center angle with 70° of the fan FOV, there are 153 building cells
and 190 occlusion cells in the three fixed-angle fan FOVs of the camera.

Fig. 17. The combination KDE of POIs and WeChat records at different times.

Fig. 18. The coverage area comparison of the Case A and Case B versus Case04 with 80% coverage.
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(3) Three cameras with 39°, 54°, and 65° center angles can be inferred
according to the viewshed and LBS data using the proposed method in
Section 3.2. The number of building units covered by the FOV is re-
duced to 9, and none of the cells are occluded (the right graph of
Fig. 19). By applying building footprint data, POI data, and WeChat
data, our method can infer many different types of monitoring cameras
with detailed parameters such as camera location, FOV angle, or-
ientation, and visible distance, which is beneficial to lessen the number
of occluded areas and deployment costs.

5.5. Practical application discussions

The monitored probability is used to infer the candidate camera
position in our method. The higher the probability that the cell is
monitored, the wider the range of the field of view, where the deployed
camera can monitor more areas and receive less occlusion. In actual
surroundings, these well-viewed cells may be located in the center of
the surveillance area, such as the center of an open square, and may be
subject to managerial constraints if deployed directly at the inferred
location. However, the method is based on cells for inference (cell area
is 4m2). For the sake of simplicity, the cell center point is selected when
generating the camera position; but in fact, any position in the specific
cell can be picked as candidate camera position. When deploying the
camera, the camera can be deployed in the vicinity of the inferred
position with the corresponding street lights, trees, etc., to free of the
problem of physically impractical. At the same time, the deployment
constraint can be further added to our method in the inference process
to exclude the cell that cannot be deployed.

The camera parameters are unknown in the proposed method.
These parameters are directly inferred based on the buildings, POIs, and
WeChat records in the surveillance area. In practical applications, one
of the possible scenarios is that there are corresponding types of sur-
veillance cameras, and the parameters such as the angle and the
monitoring distance are fixed. The method can also meet this camera
planning requirement. According to the current primary surveillance
camera type, there are seven kinds of camera FOV angles: 10°, 20°, 26°,
39°, 50°, 70°, 360° and six kinds of monitoring distances: 10 m, 20 m,
30 m, 40 m, 50 m, 60 m. After inferring the camera position, azimuth,
and FOV angle used the method described in Section 3, the closest
camera type combination could be selected from the above parameters.
For example, if the calculated candidate camera has an angle of 98° and
a radius of 51.74 m, two types of cameras can be picked as candidate
cameras with a FOV angle of 70° and 26° and a radius of 50 m. In this
way, the camera type parameters could be obtained, their FOV could be
generated, and then the coverage optimization could be performed. As
the narrowing of the camera's FOV angle, the number of cameras in-
creased significantly to 179 with 90% coverage, and the corresponding

average coverage decreased slightly to 68.12% compared with the re-
sults of Section 4. The overlap rate and the occlusion rate increased
slightly, being 34.03% and 1.19%, respectively. However, despite that,
the result is better than circular FOV. The method provides a solution
for camera planning under the premise of known camera parameters.

6. Summary and conclusions

The coverage inference and optimization on the camera planning
area continues to be a methodological challenge. In this paper, we in-
troduce a camera coverage inference method using multi-source LBS
data and optimize the camera placement with the MCLP-CC model to
enhance the camera planning. The related issues such as the camera
coverage model, the probability of cell monitored calculation, the
camera coverage inference algorithm, and the camera coverage opti-
mization are detailed. The method is discussed in depth from four as-
pects: cell size, demand unit importance, LBS data at different times,
and practical applications. The advantages of the proposed camera
coverage inference and optimization solution are summarized as fol-
lows. In the first place, the detailed camera parameters including
camera location, FOV angle, orientation yaw, and visible distance in-
stead of single camera location or fixed type cameras are inferred using
the multi-source LBS data. Based on these parameters, users can con-
figure the different type of cameras to achieve the surveillance task.
There is one more point that the vital spot of an area which is reflected
by the static (building footprints) and dynamic objects (people's activ-
ities indicated by POI and social network record) are utilized in the
camera coverage inference process. It is given rise to the lower occlu-
sion ratio and overlapping ratio with the same coverage ratio. The last,
but not the least, is that the data used in our method is easy to access
which were collected from the online LBS web services. With the con-
straint of camera cost, the paper focuses on the use of LBS data to infer
the camera parameters, and the MCLP-CC model is used to get the
optimization scheme which generates the max coverage by few cameras
to reduce the cost. For camera deployment that requires a specific
overlap rate and without cost constraint, the method could be easily
used for the overlapping coverage optimization by BCLP or MCLP-B
(maximal covering location problem with backup) model (Church &
Murray, 2018; Murray et al., 2007).

Further studies of the following two topics should be performed.
First, the 3D camera coverage geospatial model should be investigated,
and the general 3D coverage inference methods should be defined to
describe coverage precisely more than just providing 2D FOVs.
Modeling the 3D coverage of camera with 3DGIS will create a host of
potential applications for solving real-world camera planning problems.
Moreover, the camera height parameter should be considered for
camera placement, which is omitted from our study. Another cardinal

Fig. 19. The occlusion cells comparison of the circle, fixed-angle fan, and multi-angle fan FOV.
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direction is to implement a GIS toolbox or web service interface for
camera coverage inference and optimization process and evaluate the
cost of the camera deployment solution. Meanwhile, the sensitivity
analysis should be performed with the different weight settings for the
overlay of KDE values of POIs and WeChat records.

We believe the method introduced in this paper, especially using the
Location-based Service data, has application potentials in camera
planning and deployment. Supported by data collection and processing
methods of GIS, various innovative camera planning tools could be
implemented for both video surveillance and the visual sensor network
application.
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