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A B S T R A C T

Aeolian dust can influence the climate, air quality, human health, and ecosystems. Dust events in Northern China
are the main contributors to dust aerosols in the world, but the impacts of meteorological and anthropogenic
factors and their interactions on dust events remain unclear. This study analyzed the spatial and temporal
variations of dust event frequencies and quantitatively investigated the impacts of meteorological conditions,
anthropogenic factors, and their interactions on dust events using the geographical detector model
(GeoDetector) in Northern China. Results revealed that the dust event frequency significantly decreased by 0.006
times yr−1 per site during 1980–2007. At the regional scale, there were large seasonal variations in the effects of
meteorological conditions and anthropogenic factors on dust events. Strong winds and soil surface conditions are
main drivers of dust events in spring. In summer and autumn, anthropogenic factors have significant impacts on
the occurrence of dust events, but the frozen period and relative humidity are major impacting factors in winter.
Effects of natural and anthropogenic factors on dust events showed great spatial and seasonal disparities over
different vegetation regions. Interactions between two factors enhanced their impacts on the occurrence of dust
events. There are also large spatial and seasonal variations in the primary interactions on dust events over
different vegetation regions. The findings could help us to better understand the relative importance of various
factors on dust events, which has important implications for improving the prediction of dust emission models
and developing desertification control strategies.

1. Introduction

Aeolian dust from wind erosion is the most abundant type of aerosol
in the atmosphere (Kok et al., 2018); it mainly originates from arid and
semi-arid areas in the world (Wang et al., 2015, 2017; Song et al.,
2016). Dust aerosols can be transported over thousands of kilometers.
They influence the global climate by scattering and absorbing radiation,
serving as a nuclei for cloud formation, and fertilizing ecosystems
through dust deposition (DeMott et al., 2010; Yan et al., 2011; Yang
et al., 2016; Kok et al., 2018; Song et al., 2019). They can also affect air
quality (Wang et al., 2018a; Li et al., 2019) and human health

(Lelieveld et al., 2015) by increasing the particulate matter con-
centrations.

Dust events generally occur when the surface wind velocity exceeds
a certain threshold friction velocity (Song et al., 2017). This threshold is
determined by a combination of natural (e.g. wind velocity, precipita-
tion, soil moisture, soil properties, vegetation growth) and anthro-
pogenic (e.g. land use, agriculture, livestock, mowing) conditions.
However, it remains unclear what roles these driving factors and their
interactions actually play in the occurrence of dust events. Under-
standing these roles could help us improve the prediction capability of
dust emission models.
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Numerous studies have been conducted to explore the impacts of
various potential driving factors on dust events. Changes in the surface
conditions of source areas and variations in the wind velocity in the
near-surface layer are generally recognized as the two main reasons for
the variations in the frequency and distribution of dust events (Yu et al.,
2009; Shen et al., 2018). Both of these reasons are closely related to the
global climate change (An et al., 2018). In addition, precipitation, soil
moisture, air temperature, surface soil conditions as well as human
activities play important roles in the determination of the vegetation
growth and thereby influence dust events (Kimura et al., 2009; Lee and
Sohn, 2011; Wang et al., 2018b).

Relationships between dust events and conditions of the climate and
ground surface have been analyzed in previous studies. Wind speed has
been recognized as a predominant driving factor in dust processes
(Rashki et al., 2018; Shen et al., 2018). Numerous studies have sug-
gested that the frequency of dust events increased with increasing wind
speeds (Wu et al., 2018; Wang et al., 2019). Dust events always nega-
tively correlated with precipitation by the improvement in soil moisture
or vegetation growth (Kang et al., 2016; Namdari et al., 2018). The
mechanisms of effects of temperature on dust events are complex, as
positive and negative correlations exist simultaneously (Song et al.,
2016, 2017; Singh et al., 2017). Several studies have indicated that
changes in relative humidity contribute to most of the variability in
surface soil moisture, which, in turn, has significant influences on the
threshold friction velocity (Ravi et al., 2004; Ju et al., 2018). Moreover,
some studies have explored the influence of land use (Li et al., 2014; Xi
and Sokolik, 2016; Du et al., 2017; Galloza et al., 2018), gross domestic
product (GDP) (Jiang et al., 2016), and population (Guan et al., 2016)
on the occurrence of dust events.

Although previous studies have identified correlations between dust
events and the natural and anthropogenic conditions using traditional
methods such as linear/nonlinear regression based on datasets of
monitoring (Kang et al., 2016), remote sensing (Namdari et al., 2018),
model simulations (Song et al., 2017), wind tunnel experiments (Ravi
et al., 2004), and field experiments (Ju et al., 2018; Wang et al., 2019).
However, these investigators usually focused on unilateral effects of
natural or anthropogenic factors through identifying the correlations
between dust events/emissions and impacting factors. The relative
importance of these factors in the occurrence of dust events have been
rarely quantified. In addition, they also did not consider the potential
for interactive effects between factors impacting dust events, but these
methods have limited capabilities in examining the interactive effects of
driving factors on dust events.

The arid and semi-arid region in Northern China is a main con-
tributor to global dust emissions (Song et al., 2019). Quantifying in-
fluences of potential factors and their interactions are essential for
understanding the relative importance of potential driving factors in
dust emissions. In this study, the geographical detector model (Geo-
Detector) was adopted to quantitatively investigate the importance of
natural conditions (e.g., air temperature, precipitation, relative hu-
midity, air pressure, surface frozen period, vegetation, etc.) and an-
thropogenic factors (e.g., land use, cultivated land, population, and
GDP) and their interactions on the occurrence of dust events.

2. Materials and methods

2.1. Study area and influencing factors

The study area is the arid and semi-arid regions in Northern China
with temperate continental climate (Fig. 1). The total area accounts for
approximately 30% of the China territory with mean annual pre-
cipitation less than 400 mm and the annual mean temperature ranging
from 0 °C to 13 °C (Song et al., 2019).

To investigate the relative importance of driving factors in the oc-
currence of dust events in Northern China, we selected 15 natural and
four anthropogenic factors (Table 1) according to previous studies

(Guan et al., 2016; Jiang et al., 2016; Song et al., 2016; Du et al., 2017;
Ju et al., 2018). Among these factors, the frozen period (FP) of each site
refers to the largest number of days between freezing and thawing dates
throughout the whole year. The dates of the surface temperature below
or above 0 °C for five consecutive days were used to determine the
surface freezing and thawing dates, respectively.

2.2. Datasets

The daily dust event records and daily average meteorological data
at 152 stations (Fig. 1) were obtained from the China Meteorological
Data Service Center during the period of Jan. 1, 1980-Dec. 31, 2007.
Dust event data are calculated based on the records of basic land-based
stations in China. These stations cover most of vegetation types in the
research region. The land use data for 1980s, 1995, and 2000 were
obtained from the Data Sharing Infrastructure of Earth System Science,
which had a map scale of 1:100,000. Data in 1980s, 1995, and 2000
were considered as the land use data during 1980–1989, 1990–1999,
and 2000–2007, respectively. The monthly Normalized Difference Ve-
getation Index (NDVI) datasets during 1982–2007 were obtained from
the Global Inventory Modeling and Mapping Studies (Tucker et al.,
2005) with a spatial resolution of 8 km × 8 km, which were used to
calculate the vegetation cover by using the method of Gutman and Ig-
natov (Gutman and Ignatov, 1998). GDP, CUL, and POPU data were
obtained from China’s statistical yearbook. All the data used for the
analyzing were the long-term monthly averages at 152 meteorological
stations. For anthropogenic variables, the annual average throughout
the whole year at each station was used as the monthly average and was
extracted from maps of anthropogenic factors using ArcGIS 10.3 soft-
ware (http://www.esri.com). The quality-control procedures were
thoroughly applied and evaluated in datasets of daily meteorological
data (Feng et al., 2004), land use (Liu et al., 2002; Ran et al., 2010), and
NDVI (Tucker et al., 2005).

2.3. GeoDetector q statistic

In this study, GeoDetector q statistic was used for quantifying im-
pacts of meteorological and anthropogenic factors and their interactive
effects on dust events in Northern China. GeoDetector q statistic is a
spatial variance analysis model that can be used to assess non-linear
associations between potential factors and target geographic phe-
nomena (Wang et al., 2010, 2016; Wang and Xu, 2017). The core un-
derlying assumption of the model is that if an X (explanatory variable)
causes Y (explained variable), then their spatial distribution would be
consistent. Compared with commonly used linear models, GeoDetector
q statistic is capable of taking advantage of categorical explanatory
variables, detecting the dominant factor, and assessing the effect of
interaction between two X variables on Y without the restriction of
linearity assumption and immunity to the collinearity.

The spatial association between X (e.g. natural and anthropogenic
factors in this study) and Y (e.g. dust events in this study) can be
measured by the q statistic which is defined as follows:

= =

=
=

=

=q

SSW N
SST N

1 1N
N

SSW
SST

h
L

h h

X

1
2

2

h
L

h h

X

1
2

2

(1)

where h = 1, 2…L denotes the strata of factor X. Nh and N denote the
number of samples in stratum h and the total number of samples over
the whole study region, respectively. SSW and SST denote the sum of
variance and global variance in stratum h and in the whole study area,
respectively. The factor detector can be used to explore the extent to
which factor X explains the spatial variation of variable Y. The interval
of q is [0, 1], and the value means that a factor X explains q× 100% of
the dust events. The bigger the q value, the larger the non-linear
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association with regard to dust events. If spatial distribution of dust
events is completely determined by a factor X, the q value is 1, and if
dust events and a factor X have no spatial association with each other,
the q value is 0.

The interactive effect of two X factors on dust events also can be
quantified by q statistic. The index can be used to assess the interactive
effects of two factors by comparing value of q(X1 ∩ X2) with values of q
(X1) and q(X2). The interaction of two variables (X1 ∩ X2) was calcu-
lated by overlaying the two variables layers in GIS tools. Furthermore,
the interactive relationship can be interpreted in terms of five cate-
gories by comparing the interactive q value of the two factors and the q
value of each of the two factors. These five categories are as follows:
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The natural breakpoint stratification method was adopted to sort
the original data because it can capture the smallest variance in stratum
and largest variance between strata (Wang et al., 2010), which is
consistent with the principle of GeoDetector q statistic.

3. Results

3.1. Spatial-temporal variations of dust events

Fig. 2 illustrates that severe dust events were mainly distributed in
regions of desert and desertified lands, such as Southern Xinjiang,
Gansu, and Western Inner Mongolia. The dust event frequency had
large spatial differences in different vegetation types in Northern China.
The annual mean dust event frequency was 0.42 times/site in Northern

Fig. 1. Spatial distributions of vegetation types and meteorological stations (blue circles) in Northern China. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 1
Natural and anthropogenic factors and their data sources.

Influencing factors Data source

Natural factors Relative humidity (RH) China Meteorological Data Service Center: http://
data.cma.cnPrecipitation: daily accumulated precipitation (PR), daily maximum precipitation (DMP)

Daily air temperature at 2 m above the ground: mean highest temperature (MHT), highest
temperature (HT), mean temperature (MT), lowest temperature (LT), mean lowest temperature,
(MLT)
Air pressure: mean air pressure (MP), highest air pressure (HP), lowest air pressure (LP)
Daily wind speed at 10 m above the ground (MWS)
Mean water pressure (MWP)
Surface frozen period (FP)
Vegetation coverage (VC) Calculated from NDVI data of Global Inventory

Modeling and Mapping Studies
Anthropogenic factors Land use (LU) Data Sharing Infrastructure of Earth System Science:

http://www.geodata.cn/
Population density (POPU) China’s statistical yearbook: http://data.cnki.net/

YearbookCultivated vegetation (CUL)
GDP per unit area (GDP)
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China during 1980–2007. Areas with cultivated vegetation had the
largest annual dust event frequency (3.14 times/site), followed by de-
serts (0.55 times/site), steppes (0.50 times/site), meadows (0.29 times/
site), and broadleaf forests (0.09 times/site).

Fig. 3 shows that the frequency of dust events in Northern China has
significantly declined from 1980 to 2007. The annual dust events de-
clined approximately 0.006 times/site during this period. The most and
least severe dust events occurred in 1982 (0.256 times/site) and 1997
(0.047 times/site), respectively. However, the dust event frequency
showed an upward trend from 1997 to 2001, followed by a downward
trend (Fig. 3a). Dust events mainly occurred in spring (2.866 times/
site), followed by summer (1.234 times/site), winter (0.539 times/site),
and autumn (0.320 times/site) (Fig. 3b).

3.2. Impacts of influencing factors on dust events

3.2.1. Impacts of factors on dust events at regional scale
The effect of each independent factor on dust events was de-

termined by calculating its q value (Fig. 4), which indicated the relative
importance of each factor in the occurrence of dust events. We found
that land use and relative humidity were the two primary factors
(q > 0.15) impacting dust events at the annual time scale, followed by

precipitation, vegetation coverage, and air pressure.
There were large seasonal variations in the impacts of driving fac-

tors on dust events in Northern China (Fig. 4). Air pressure (LP, MP, and
HP) and temperature (MT and MLT) were dominant drivers (q = 0.30)
in spring, followed by RH (q= 0.22), VC (q= 0.19), MHT (q= 0.15),
LU (q= 0.14), HT (q= 0.11), and FP (q= 0.10); GDP (q= 0.04) and
POPU (q = 0.03) had the lowest impacts. In summer, the land use was
the primary impacting factor (q = 0.19), while other factors had weak
impacts (q < 0.09). In autumn, however, dominant factors were GDP
(q = 0.17) and LU (q = 0.14), and in winter, FP (q = 0.25) had the
largest impacts, followed by RH (q= 0.20), temperature (HT, q=0.20;
MT and LT, q = 0.18; MLT, q = 0.16), air pressure (LP, MP, and HP)
(q = 0.18), GDP (q = 0.15), VC (q = 0.14), and LU (0.13).

3.2.2. Impacts on dust events in different vegetation regions
Fig. 5 shows that the annual and seasonal impacts of potential

driving factors on dust events exhibited large differences for the three
different vegetation types (deserts: DES, steppe: STE, and cultivated
vegetation: CULV). Generally, POPU dominated (q= 0.59) dust events
in desert regions (Fig. 5a) at the annual time scale, followed by air
pressure (HP and MP). Precipitation and vegetation cover exhibited
weak association with dust events in desert areas. However, primary

Fig. 2. Map of vegetation type and annual dust event frequency (red circles) in Northern China. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Slope = -0.006 R² = 0.657 P < 0.001
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Fig. 3. Interannual (a) and seasonal (b) variations of the dust event frequency per site in Northern China.
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impacting factors were LU (STE, q = 0.26; CULV, q = 0.23) and RH
(STE, q = 0.21; CULV, q = 0.17) in both regions of steppe and culti-
vated vegetation (Fig. 5b and c).

In desert regions, the primary drivers were air pressures (LP,
q= 0.32; MP, q= 0.33; and HP, q= 0.34) and land use (q= 0.23) in
spring and summer (Fig. 5a), respectively. In autumn, GDP (q = 0.17)
was the dominant factor, followed by LU (q= 0.12), POPU (q= 0.11),

and VC (q = 0.10). In winter, however, the air pressures were the
primary impacting factors

In steppe regions, LU (q= 0.48) and VC (q= 0.39) were dominant
factors in spring, followed by air pressures (LP, q= 0.27; MP, q= 0.22;
HP, q = 0.23), RH (q = 0.22), CUL (q = 0.18), and FP (q = 0.13)
(Fig. 5b). LU (q = 0.27) was the primary controlling factor in summer,
whereas the dominant controlling factor were GDP (q = 0.50) and LU
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(q = 0.37) in autumn. In winter, however, factors such as RH
(q = 0.45), LT (q = 0.45), and GDP (q = 0.44) were main impacting
factors, followed by MLT (q = 0.42), VC (q = 0.40), MT (q = 0.37),
and HT (q = 0.34) (Fig. 5b).

In cultivated regions, air pressures (LP, MP, and HP) (q ≈ 0.33)
played a dominant roles in dust events in spring, followed by RH
(q = 0.20), MHT (q = 0.19), VC (q = 0.17), MT (q = 0.17), LT
(q = 0.16), and LU (q = 0.14) (Fig. 5c). The primary factor was LU
(q = 0.23) in summer, but GDP (q = 0.17), LU (q = 0.12), POPU
(q= 0.11), and VC (q= 0.10) were main impacting factors in autumn.
Similar to spring, the air pressure was also the dominant factor for the
occurrence of dust events in winter.

3.3. Interactions of impacting factors

3.3.1. Interactive effects at the regional scale
Figs. 6 and 7 show the top 20 pairs of annual and seasonal inter-

actions between the 19 factors examined in this study, respectively. The
interactive q value of each pair of factors was larger than both q values
of the two factors, and some of the interactive q values were larger than
the sum of the two factors’ q values. This indicated that the interactive

relationship between each pair of factors was bivariate and/or that they
nonlinearly enhanced each other in influencing dust events; this was
especially true for meteorological factors and LU (Fig. 6). Among the
interactions of meteorological and anthropogenic factors, q (RH ∩ LU)
was the maximum (0.32), indicating that the interaction between RH
and LU was strongest, followed by the interactions between air pressure
(MP, LP, and HP) and LU.

There were large seasonal variations in the interactions between
each pair of factors (Fig. 7). In spring, the interactions between air
pressure (LP, HP, and MP) and LU were strongest among all the inter-
actions (Fig. 7a). All the top 20 interactions were between air pressure
and potential impacting factors, indicating that air pressure played a
dominant role in the occurrence of dust events in spring. The largest
interaction was between CUL and LU in summer (Fig. 7b), and inter-
actions between LU and other factors had greater contributions to dust
events than other interactions. In autumn, however, the strongest in-
teraction was between LU and GDP, with GDP having more influence,
judging from its interactions with other factors (Fig. 7c). In winter, the
interaction between LP and FP was largest (Fig. 7d). Moreover, the
interactions between FP and meteorological conditions and between
GDP and meteorological factors had larger impacts on dust events than

Fig. 6. Annual q values of interactions between potential impacting factors at the regional scale.

Fig. 7. The q values of the interactions between potential factors at the regional scale in spring (a), summer (b), autumn (c), and winter (d).
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all the other interactions in winter (Fig. 7d).

3.3.2. Interactions in regions of different vegetation types
The interaction q value of each pair of factors presented large var-

iations in the three vegetation-type regions (Fig. 8). In desert regions,
the interaction between DMP and POPU was strongest among all the
interactions, while the interaction between HT and HP was the stron-
gest among the interactions between meteorological factors. The top 17
pair of interactions all included the POPU factor, which also indicated
that POPU was an important factor in the occurrence of dust events in
desert areas (Fig. 8a). In cultivated vegetation regions, the interaction
between RH and LU was strongest among all the interactions between
meteorological factors and anthropogenic factors (Fig. 8b). In steppe
regions, however, the interaction between MWS and LU was largest,
followed by the interaction between MP and MWS and between RH and
MLT (Fig. 8c).

4. Discussion

Dust events are driven by natural and anthropogenic factors and
their interactions. Previous studies have reported that dust events are
associated with both meteorological and anthropogenic conditions
(Wang et al., 2013; Csavina et al., 2014; Feng et al., 2017; Ju et al.,
2018). This study quantified the influences of natural and anthro-
pogenic factors, as well as of their interactions, on dust events using the
GeoDetector q statistic. This method is capable of identifying the

relative importance of various factors and their interactions in the oc-
currence of dust events. Being able to identify and quantify these factors
can help to improve the performance of dust prediction models.

At the regional scale, we found that land use and relative humidity
are the two dominant factors influencing dust events at the annual time
scale. Among all the interactions, the interaction between relative hu-
midity and land use presented the largest influence on dust events. This
is because the land use change can affect the relative humidity
(Mavrakis and Ηr, 2013) and baseflow (Huang et al., 2020), thus af-
fecting the surface soil moisture and the threshold friction velocity
(Ravi et al., 2004; Ju et al., 2018) and then the occurrence of dust
events. To control desertification, many ecological restoration pro-
grams (Zhang et al., 2018) have been conducted in China over the past
several decades. The vegetation restoration (Xu et al., 2020) and its
interaction with relative humidity (Mavrakis and Ηr, 2013) is one of the
reasons for the reduction of dust events in recent decades.

In spring, meteorological conditions, especially the air pressures and
temperatures, were found to play dominant roles in the occurrence of
dust events, which is consistent with previous studies (Csavina et al.,
2014; Song et al., 2017; Namdari et al., 2018). The pressure gradient
force and changes in the pressure at ground level have large influences
on the wind speed in the near-surface layer (An et al., 2018). Strong
winds and dry surface conditions due to higher temperatures could
result in high frequencies of dust event (Kim et al., 2017; Shi et al.,
2020). However, anthropogenic factors appear to be the primary in-
fluencing factors in summer and autumn. This is due to the intensity of
human activities of grazing and mowing in these reasons can sig-
nificantly influence the vegetation cover the soil surface conditions (Du
et al., 2019; Shao et al., 2012; Wang et al., 2020). In winter, the frozen
period and relative humidity were primary influencing factors, which
can be explained that the relative humidity can impact dust events by
influencing the soil moisture content and soil frozen period (Ravi et al.,
2004; Wang et al., 2014; Ju et al., 2018). This is consistent with pre-
vious studies that have reported a slightly negative correlation between
the relative humidity and dust concentrations, as well as dust fluxes (Ju
et al., 2018). The frozen period can suppress/stimulate dust events, thus
one of the main reasons for dust events occurring in spring and early
summer is the long-term drying and freezing in winter, which makes
the surface soil loose when it thaws in spring.

In desert regions, we found that population density was the primary
impacting factor at the annual time scale. Air pressures were primary
factors in spring over desert regions. This is because the pressure gra-
dient force at the ground level have large influences on the wind speed
near the surface (An et al., 2018), which provides the necessary dy-
namic conditions for dust emissions and transport. In summary, human
activities, dry surface conditions, and strong winds were the main dri-
vers of dust events in spring in desert regions, which is consistent with
the results reported by previous studies (Kurosaki and Mikami, 2003;
Gong et al., 2006; Kimand and Kai, 2007; Wang et al., 2019). However,
wind speed does not work alone to generate dust events, but acts in
combination with other factors such as vegetation coverage, soil
moisture, and topography. The dominant factors are the land use and
GDP in summer and autumn, respectively. This is because grazing and
mowing intensity is significantly correlated with GDP (Wei and Zhen,
2020) and can significantly affect the vegetation productivity (Tälle
et al., 2016; Chi et al., 2018), thus influencing the occurrence of dust
events. Flourishing vegetation prevents dust emissions and thereby
reduces the frequency of dust events (Rashki et al., 2013; Xu and Liao,
2007).

Land use and vegetation cover were major factors impacting dust
events in steppe areas in spring. This is because vegetation can anchor
the topsoil thereby preventing dust erosion (Kimura et al., 2009; Yan
et al., 2011; Wang et al., 2013; Guan et al., 2017). In the steppe region
of Inner Mongolia, mowing and grazing are two widely adopted prac-
tices for grasslands utilization and management (Shao et al., 2012,
2017) and are main contributors to GDP. GDP can be considered as an

Fig. 8. Comparisons of the interactive q value and the original q value of each
pair of factors in vegetation types: (a) deserts, (b) cultivated vegetation, and (c)
steppes.
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indicator of the mowing intensity, which suggests that the mowing
intensity may be the primary driver of dust events in autumn. In
summer, intense grazing can reduce grassland productivity and lead to
desertification and then high dust emissions (Tong et al., 2004). In
winter, the mechanism of dust events is more complex and mainly
determined by the combined effects of wind velocity, relative humidity,
lowest temperature, GDP, and vegetation cover. Furthermore, excessive
grazing and mowing in spring, summer, and autumn could exacerbate
the generation of dust events in winter. In cultivated vegetation regions
in Northern China, similar to the steppe region, land use is the primary
impacting factor throughout the whole year. The main crops in culti-
vated regions are wheat, maize, and potatoes, and all of them are
planted in spring and harvested in autumn. The higher dust event fre-
quency in spring can be attributed to the high wind speed and the bare
soil surface in cultivated regions.

Wind erosion is affected by complex interactions among soil prop-
erties, climate, vegetation, and land management (Song et al., 2017).
Complex interactions universally exist in the system of dust event
generation. It is important to identify how natural and anthropogenic
factors interact with each other because these results represent in-
formation useful for controlling and predicting the occurrence of dust
events. The interaction detector revealed that interactions between all
the factors presented enhanced influence on dust events. As the an-
thropogenic factors were related to human activities, such as grazing,
mowing, and agriculture activities, their interactions would reinforce
each other in exacerbating dust events. Anthropogenic activities, both
spatially and seasonally, interact with natural fators within a vegetation
system to further influence dust events.

5. Conclusions

This study found that the land use policy is one of the reasons re-
sulting in the significant decrease of dust event frequency over the past
several decades. Results revealed spatial and temporal variations in the
impacts of natural and anthropogenic factors and their interactions on
the occurrence of dust events. The combination of strong winds and dry
surface conditions leads to the high frequency dust events in spring.
Human activities such as grazing and mowing can significantly influ-
ence the occurrence of dust events in summer and autumn, but FP and
RHU are the two major impacting factors in winter. The relative im-
portance of impacting factors in dust events varies greatly in different
vegetation type regions. Interactions between two influencing factors
enhanced their impacts on dust event generation, and the dominant
interaction factor affecting dust events differed at different vegetation
regions and seasons.

Due to the complicated mechanisms and interactions between nat-
ural and anthropogenic factors, it remains challenging to understand
the relative importance of impacting factors and their interactions in
occurrence of dust events. This study comprehensively quantified the
influences of natural conditions and anthropogenic factors and their
interactions on dust events using the GeoDetector model in Northern
China. Considering the difficulty in understanding quantitatively the
association and the interaction between dust events and its impacting
factors, these findings could help us to better understand the relative
importance of impacting factors in the occurrence of dust events, and
they have significant implications for the prediction of dust emissions.
Moreover, these findings could guide the development of strategies for
dust emission control and desertification mitigation in different vege-
tation regions.
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