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• Spatiotemporal variations of O3 con
centrations in Henan were simulated by 
WRF/Chem. 

• O3 concentrations and AOT40 showed a 
clearly increasing trend in most all 
counties. 

• O3 exposure induced around 14% of 
total wheat production losses during 
2015–2018.  
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A B S T R A C T   

Ground-level ozone (O3) is a secondary air pollutant and has negative effects on crops, especially in China in 
recent years due to the sharply increasing precursors of O3. Based on the hourly O3 concentrations simulated by 
Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) and AOT40 index (accumulation 
of hourly ozone concentrations exceed 0.04 ppm), we assessed the losses of yield and economy of winter wheat 
during 2015–2018 at the county level for a central province (Henan) of China. The O3 concentration and AOT40 
during the wheat growing seasons (75-days, 44 days before and 30 days after mid-anthesis) showed a clearly 
increasing trend over nearly all counties. The annual mean AOT40 was 6.25 ppm h, 4.32 ppm h, 5.26 ppm h, and 
6.87 ppm h from 2015 to 2018, respectively. The AOT40 and the loss of relative yield of winter wheat showed 
significant spatial and temporal variations at the county level. The annual mean relative yield loss of wheat for 
Henan during 2015–2018 was 12.8%, 8.8%, 10.8%, and 14.1%, respectively, and associated with 2140.10 
million, 1318.57 million, 1683.03 million, and 2161.22 million US dollars, respectively. Results indicated that 
we should formulate more reasonable and stringent emission reduction measures to reduce the O3 pollution 
levels and ensure food security in China.  
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1. Introduction 

Ground-level ozone (O3) is a secondary air pollutant produced by 
nitrogen oxides (NOx) and volatile organic compounds (VOCs) under 
photochemical reactions (Guo et al., 2019; Wang et al., 2019; Liu et al., 
2020), which has adverse impacts on climate, air quality, ecosystem, 
and human health (McGrath et al., 2015; Lin et al., 2018; Zhao et al., 
2018; Feng et al., 2019a, 2019b; Guarin et al., 2019). The emission of O3 
precursors (NOx and VOCs) in China had increased sharply over the past 
three decades due to the rapid increase in the consumption of fossil fuels, 
resulting in the O3 pollution level of China surpassing that of North 
America and Europe (Wang et al., 2017; Li et al., 2020; Liu et al., 2020). 
High pollution levels of O3 has long been a major air quality issue in the 
world, especially the Northern Hemisphere, and the trend is getting 
worse (Mills et al., 2018a; Lu et al., 2018; Gaudel et al., 2020). Ozone 
enters plants through stomatal gas exchange, causing damage to plant 
tissue, such as leaf senescence and shedding, growth and yield reduc
tion, and biotic and abiotic stresses (Wilkinson et al., 2012; Broberg 
et al., 2015; Feng et al., 2015; Singh and Agrawal, 2016; Mills et al., 
2018b; Pleijel et al., 2018). 

Over the past few decades, many manipulative experiments based on 
open top chambers (OTC) systems and free air controlled exposure 
(FACE) conducted in Europe, America, and Asia have shown that current 
high levels of O3 pollution already pose a severe threat to world food 
production (Massman et al., 2000; Musselman et al., 2006; Wang et al., 
2007; Feng and Kobayashi, 2009; Yamaguchi et al., 2014; Feng et al., 
2015; Watanabe et al., 2016). On the basis of these experiments, several 
O3 exposure metrics have been developed to evaluate the impacts of 
past, current, and future O3 pollution levels on the relative yield loss 
(RYL) of crops at global, national, and regional scales (Avnery et al., 

2011a, 2011b; Danh et al., 2016; Zhao et al., 2018). For instance, AOT40 
(accumulation of hourly ozone concentrations exceed 0.04 ppm) (Fuhrer 
et al., 1997), M7/M12 (mean 7 h or 12 h daytime O3 concentration) 
(Adams et al., 1989), SUM06 (accumulated O3 concentration above the 
level of 0.06 ppm) (Danh et al., 2016), PODy (phytotoxic ozone dose 
over a threshold of y nmol m− 2 s− 1) (Mills et al., 2011; Grunhage et al., 
2012) etc. Among these O3 exposure indices, AOT40 is the most 
commonly used exposure-based metric over the past two decades 
because it is easy to calculate and has been found to have a strong 
correlation with RYL of many crops (Mills et al., 2007; Liu et al., 2009; 
Wang et al., 2012; Zhu et al., 2015; Li et al., 2018). 

The AOT40 metric and several response functions of RYL caused by 
the high O3 concentration exposure were proposed from local field ex
periments in Europe (Mills et al., 2007). Several previous studies have 
adopted response functions based on AOT40 to assess the global, 
regional, and local effects of surface O3 exposure on worldwide yields of 
crops (Mills et al., 2007; Sinha et al., 2015; Zhu et al., 2015; Sicard et al., 
2017). However, these response functions were often adopted to esti
mate the O3-induced crop losses in other countries (Amin, 2014; Debaje, 
2014; Zhu et al., 2015; Lal et al., 2017). For instance, Avnery et al. 
(2011b) reported that the yield loss of the world resulted from O3 
pollution ranged from 3.9% to 15.4% for wheat, 8.5–14% for soybean, 
and 2.2–5.5% for maize in 2000, and projected that wheat relative yield 
loss (WRYL) of 4.0–26.0%, soybean relative yield loss of 9.5–19.0%, and 
maize relative yield loss of 2.5–8.7% in 2030 based on atmospheric 
chemistry transport model and AOT40 response functions (Avnery et al., 
2011a). In the United States, the ground-level ozone exposure resulted 
in 6.7% and 4.9% yield losses for soybean and wheat, respectively, based 
on the GEOS-Chem model and the AOT40 metric (Lapina et al., 2016). 
Ghude et al. (2014) concluded that the high O3 level resulted in 3.5 ±

Fig. 1. Map of the WRF/Chem model domain configuration and observation sites. D01 and D02 denote domain 1 and domain 2, respectively. Red, green, and blue 
points are air quality, meteorological, and agrometeorological observation sites, respectively. The gray shaded area is Henan province of China. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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0.8 × 106 metric tons wheat and 2.1 ± 0.8 × 106 metric tons rice losses 
during the first decade of this century in India, which can sufficiently 
feed around 35% of 270 million below poverty line population of India 
(Ghude et al., 2014). 

China is a very large country and agriculture is vitally important for 
this country because it feeds 1.4 billion people or around 19% of the 
world population (Dong et al., 2020). Wheat, rice, and maize are the 
three major crops, accounting for more than 95% of China’s total food 
production (Zhai et al., 2021). Accelerated urbanization and industri
alization in China have been accompanied by severe air pollution 
problems characterized by high concentrations of the particulate matter 
with an aerodynamic diameter less than 2.5 μm (PM2.5) and O3 (Liu 
et al., 2010; Tang et al., 2013; Wang et al., 2020; Zhang et al., 2021), 
especially in regions of the Pearl River Delta (PRD), the Yangtze River 
Delta (YRD), and the North China Plain (NCP) (Feng et al., 2015; Wang 
et al., 2017; Cheng et al., 2018). Recently, several studies indicated that 
the PM2.5 concentration has obviously reduced under the execution of 
the “Action Plan” from 2013 (Cai et al., 2017; Li et al., 2019; Liu et al., 
2020; Zhao et al., 2020). However, the reduction of PM2.5 may lead to an 
increase in the ground level O3 by enhancing the intensity of photo
chemical reactions (Lu et al., 2018; Liu et al., 2020; Zhao et al., 2020). 
Numerous recent studies have found that the ground-level O3 pollution 
has surpassed the damage threshold of crops in most regions of China 
(Lin et al., 2018; Feng et al., 2019b; Zhao et al., 2020). To estimate 
impacts of surface O3 pollution on crop productions, several studies have 
reported national or regional O3-caused yield losses of crop in China by 
using ozone observations or atmospheric chemistry transport models 
(Avnery et al., 2011a, 2011b; Li et al., 2018; Lin et al., 2018; Zhao et al., 
2018; Feng et al., 2019a). However, the O3 observation sites are mainly 
located in urban areas, which may intensify uncertainties of the esti
mation in the O3-induced crop yield losses. This is because there are 
great differences in ozone concentrations between urban and rural/
suburban regions and crops mainly distributed in rural/suburban areas 
(Dueñas et al., 2004; Xu et al., 2011; Guerreiro et al., 2014; Sicard et al., 
2016, 2017). Although the atmospheric chemistry transport model can 
capture the spatiotemporal variations of O3 concentrations in urban and 
rural/suburban regions, this kind of studies is scarce in China and the 
simulations have large uncertainties due to the resolution and accuracy 
of anthropogenic emission inventories. 

On the basis of the above concerns, the hourly O3 concentration data 
used in this study were simulated based on the Weather Research and 
Forecasting model couple with Chemistry (WRF/Chem) during wheat 
growing seasons in Henan (the major area of crop production in China 
and is experiencing severe O3 pollution). The main objectives of this 
study were to understand the spatiotemporal variations of the ground- 
level ozone concentration and AOT40 during growing seasons of 
winter wheat, and to estimate the yield and economic losses for winter 
wheat induced by O3 exposure at the county level in Henan in recent 
years. 

2. Materials and methods 

2.1. WRF/Chem model configuration 

WRF/Chem is a Weather Research and Forecasting (WRF) model 
coupled with Chemistry (Song et al., 2017; Yu et al., 2021), which can 
simulate the emission, transport, mixing, and chemical transformation 
of aerosols and trace gases simultaneously with the meteorological 
conditions. WRF/Chem (version 3.8.1) was used to simulate hourly 
ground-level O3 concentrations during February–June from 2015 to 
2018, because the period is the main growing season of winter wheat in 
Henan province, China. To minimize the effects of initial conditions on 
simulation results, a spin-up period of one week was conducted for each 
simulation. The simulation was conducted with a horizontal resolution 
of 27 km ✕ 27 km (Domain 1, Fig. 1) and 28 vertical levels from the 
surface up to 100 hPa. Two-way nesting with horizontal resolution of 9 
km ✕ 9 km (Domain 2, Fig. 1) was adopted over Henan and surrounding 
areas. Both model domains were projected on the Lambert conformal 
grid (Domain 1: 185 ✕ 128 grid points; Domain 2: 166 ✕ 184 grid 
points). 

Table 1 shows the major physical and chemical options of WRF/ 
Chem in this study. The physical options include Lin et al. microphysics 
scheme (Lin et al., 1983), the New Goddard longwave (Chou and Suarez, 
1999) and Goddard shortwave (Chou and Suarez, 1994) radiation 
schemes, the Mellor-Yamada-Janjic (MYJ) Planetary Boundary Layer 
scheme (Janjic, 1994), the Grell-Freitas (GF) cumulus scheme (Grell 
et al., 2013), and the Noah land surface model (Chen and Dudhia, 2001). 
The Carbon-Bond Mechanism version Z (CBM-Z) (Zaveri and Peters, 
1999) was used as the gas-phase chemistry mechanism in this study. The 
Model for Simulating Aerosol Interaction and Chemistry (MOSAIC) with 
4 sectional aerosol bins including aqueous reactions (Zaveri et al., 2008) 
was adopted as the aerosol scheme. The Madronich F-TUV photolysis 
scheme was selected for the photolytic rate calculation (Madronich, 
1987). 

2.2. WRF/Chem model inputs 

The boundary and meteorological initial conditions of WRF/Chem 
were initialized by using the National Center for Environmental Pre
diction (NCEP) Final Analysis (FNL) reanalysis datasets with horizontal 
resolution of 1◦ ✕ 1◦ and were available every 6 h. The Community 
Atmosphere Model with Chemistry (CAM-Chem) (Lamarque et al., 2012; 
Tilmes et al., 2015), a component of the National Center for Atmospheric 
Research (NCAR) Community Earth System Model (CESM), datasets 
were adopted as the initialized chemical and aerosol boundary condi
tions. The CAM-Chem outputs have a horizontal resolution of 0.9◦ ✕ 
1.25◦ with 56 vertical levels and are available at every 6 h. 

The anthropogenic emissions were generated based on the monthly 
average Multi-resolution Emission Inventory for China (MEIC) devel
oped by Tsinghua University, China, including emissions of organic 
carbon (OC), black carbon (BC), carbon monoxide (CO), ammonia 
(NH3), sulfur dioxide (SO2), NOx, VOCs, PM2.5, and the particulate 
matter with an aerodynamic diameter less than 10 μm (PM10) from 
sectors of power, residential, transportation, industry, and agriculture 
(Zhang et al., 2009). The biogenic emissions were calculated by using 
the Model of Emissions of Gas and Aerosols from Nature (MEGAN) 
(Guenther et al., 2006). The biomass ignition emission data was ob
tained from Fire Inventory from NCAR (FINN) (Wiedinmyer et al., 
2014). 

2.3. Observational datasets and evaluation protocols 

The performance of meteorological data simulation can directly 
affect the simulation accuracy of air pollutants due to WRF/Chem 
simultaneously couples the meteorological simulations online with the 
atmospheric chemistry (Song et al., 2017). We adopted the 3-h in situ 

Table 1 
Configurations of main physical and chemical schemes of the WRF/Chem model.   

Options Domain 1 Domain 2 

Physics Microphysics Lin et al. Lin et al. 
Longwave radiation New Goddard New Goddard 
Shortwave radiation Goddard Goddard 
Planetary boundary layer MYJ MYJ 
Cumulus parameterization GF GF 
Land-surface Noah Noah 

Chemistry Gas phase chemistry CBM-Z CBM-Z 
Aerosol MOSAIC MOSAIC 
Photolysis Madronich F-TUV Madronich F-TUV 
Aerosol feedback Open Open  
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observations of air temperature at 2 m above the ground (T2), wind 
speed (WS) and wind direction (WD) at 10 m above the ground, and the 
precipitation (PRE) at 129 meteorological stations in domain 2 (Fig. 1) 
during 2015–2018. The meteorological observation data were obtained 
from the National Oceanic and Atmospheric Administration (NOAA)-
National Climatic Data Center Surface (NCDC). The simulated ozone 
concentrations were evaluated by using the hourly in situ observations 
of the O3 concentrations at 83 observation sites in Henan. The ozone 
measurements were obtained from the China National Environmental 
Monitoring Center (http://106.37.208.233:20035/). 

To evaluate the performance of the WRF/Chem model, the statistical 
indices were used here include Mean Bias (MB), Normalized Mean Error 
(NME), Normalized Mean Bias (NMB), Root Mean Square Error (RMSE), 
and Correlation Coefficient (R) (Zhang et al., 2006; Song et al., 2017). 
The calculation method description of these statistical indices can be 
referenced in Table 2. For more detailed information of these statistical 
indices, please refer to Zhang et al. (2006). 

2.4. Calculation of AOT40 and losses of yield and economy 

In this study, we adopted AOT40 to estimate the winter wheat yield 
loss in Henan during the growing seasons from 2015 to 2018. The 
AOT40 is the sum of hourly O3 concentrations exceed 0.04 ppm (Din
genen et al., 2009; Zhao et al., 2018; Feng et al., 2019b): 

AOT40 (ppm h) =
∑n

i=1

(
[O3]i − 0.04

)
, [O3]i > 0.04 ppm (1)  

where [O3]i is the hourly O3 concentration during daytime hours (Bei
jing time: 08:00–18:00). n is the total number of hours during growing 
seasons of winter wheat. It has been widely used in analysis of crop yield 
losses (Hu et al., 2020) due to it has been found to be closely related to 
the RYL of crops (Mills et al., 2007). The growing season was defined as 
a 75 days period from 44 days before to 30 days after the mid-anthesis 
date (Zhu et al., 2011). The map of mid-anthesis date was generated 
based on the observational crop datasets at 35 local agrometeorological 

experimental stations provided by the Chinese Meteorological Service 
by using the universal kriging method of ArcGIS 10.6 software (Fig. S1). 
The hourly O3 concentration at the ground surface (around 25 m) was 
obtained from the WRF/Chem model in this study, but the exposure 
height of wheat was around 1 m. The simulated ground level ozone 
concentrations should be converted to concentrations at 1 m height due 
to the vertical concentration gradient. Therefore, we adopted the 
method of Pleijel (1998) to convert the simulated ground level ozone 
concentration to 1 m height. 

The AOT40 was commonly used as an exposure index for the 
assessment of the potential risk of the ground-level ozone to crops (Feng 
et al., 2019b; Hu et al., 2020; Zhao et al., 2020). It has been often used to 
assess impacts of ground-level O3 on crops over the past two decades 
because it is closely correlated with the relative yield (RY) of crops such 
as wheat, maize, rice (Liu et al., 2009; Feng et al., 2012, 2019b; Wang 
et al., 2012; Zhu et al., 2015), etc. Here we adopted the AOT40-based 
response function parameterized by Zhu et al. (2011) in China to esti
mate the yield losses of winter wheat caused by surface O3 exposure in 
Henan. Following is the calculation expression of the wheat relative 
yield (WRY): 

WRY = − 0.0205 × AOT40 + 1 (2) 

The winter wheat relative yield losses (WRYL) was calculated based 
on the following expression: 

WRYL = 1 – WRY (3) 

According to the calculation method of Zhao et al. (2020), we 
assessed the winter wheat production and economic losses by using the 
following formulas: 

WPL = WRYL × WP/(1 − WRYL) (4)  

EL = WPL × WPP (5)  

where WPL is losses of wheat production. WP is the wheat production. 
EL is the economic loss of wheat induced by the ground-level ozone 
exposure. WPP is the minimum purchase price set by the Chinese gov
ernment for wheat (http://www.lswz.gov.cn/). The WP datasets of 123 
counties in Henan were obtained from the Statistical Yearbook of 
Henan, China (2015–2018) (http://www.ha.stats.gov.cn/). Fig. S2 
shows the spatial and temporal variations of WP in Henan at the county 
level from 2015 to 2018. 

3. Results 

3.1. Performance of O3 simulations 

Meteorological conditions can directly affect the accuracy of O3 
simulation. Table S1 shows that WRF/Chem can provide well 

Table 2 
Quantitative statistical indices used in the model performance evaluation (modified from Zhang et al., 2006).  

Metrics Mathematical Formula Range 

Mean Bias (MB) 
MB =

1
N

∑N

i=1
(Mi − Oi)

[-∞, +∞] 

Normalized Mean Bias (NMB) 
NMB = [

∑N

i=1
(Mi − Oi)]/

∑N

i=1
Oi  

[-1, +∞] 

Normalized Mean Error (NME) 
NME = [

∑N

i=1
|Mi − Oi|]/

∑N

i=1
Oi  

[0, +∞] 

Root Mean Square Error (RMSE) 

RMSE =

[
1
N

∑N
i=1

(Mi − Oi)
2

]1
2  

[0, +∞] 

Correlation Coefficient (R) 

R =

{
∑N

i=1(Mi − M)(Oi − O)

}/{
∑N

i=1(Mi − M)
2 ∑N

i=1(Oi − O)
2
}

1
2  

[-1, 1] 

Note: M =

(
1
N

)
∑N

i=1
Mi, O =

(
1
N

)
∑N

i=1
Oi, Mi and Oi are values of model prediction and observation at time and location i, respectively. N is the number of 

samples. 

Table 3 
Performance statistics of simulated hourly ground-level O3 concentrations in 
comparison with observations in Henan during 2015–2018.  

Year Mean 
Obs 
(ppm) 

Mean 
Sim 
(ppm) 

MB 
(ppm) 

NMB 
(%) 

NME 
(%) 

RMSE 
(ppm) 

R 

Mean 0.048 0.046 − 0.002 − 5.0 45.0 0.030 0.5 
2015 0.040 0.039 − 0.001 − 2.0 50.0 0.028 0.5 
2016 0.047 0.047 0.00 1.0 47.0 0.033 0.5 
2017 0.052 0.046 − 0.006 − 11.0 40.0 0.028 0.6 
2018 0.053 0.049 − 0.004 − 7.0 44.0 0.032 0.6  

T. Wang et al.                                                                                                                                                                                                                                   



Atmospheric Environment 262 (2021) 118654

5

meteorological variables during 2015–2018. To evaluate the perfor
mance of O3 concentrations simulated by WRF/Chem, O3 measurements 
(2015–2018) at 83 observational sites were adopted to compare with O3 
simulations. In general, the O3 concentrations in Henan were relatively 
underpredicted (Table 3). The annual mean MB, NME, NMB, RMSE, and 
R of O3 concentrations during 2015–2018 were − 0.002 ppm, 45.0%, 
− 5.0%, 0.030 ppm, and 0.5, respectively. The simulated O3 concentra
tions in 2016 showed best performance compared with other three 
years. This may be due to the anthropogenic emission inventories of 
simulations during 2016–2018 was obtained from MEIC in 2016. Fig. S3 
shows that the model performance at the 83 observational sites. 
Generally, we can see that the ozone simulation was better in northern 
regions than in southern regions. This could also mainly be attributed to 
the potential errors of anthropogenic emission inventories. 

3.2. Spatiotemporal variations of ozone concentration and AOT40 

The annual average O3 concentration of Henan at daytime 
(8:00–18:00) during the wheat growing season were 0.049 ppm, 0.048 
ppm, 0.051 ppm, and 0.052 ppm from 2015 to 2018, respectively. There 
were significant spatial and temporal variations in O3 concentrations at 
the county level during 2015–2018 (Fig. 3). In general, the most severe 
regions of O3 pollution mainly distributed in south of Henan during this 
period (> 0.05 ppm) (Fig. 2). The ground level O3 concentrations in 
most counties of Henan showed an upward inter-annual variation dur
ing 2016–2018 (Fig. 3), especially some counties in northeast and 
southern Henan. The hourly O3 concentrations at daytime during the 
wheat growing season exceeded 0.04 ppm in most counties (99.19% in 
2015, 99.19% in 2016, 100% in 2017, and 100% in 2018). Fig. 4a shows 
the distribution of urban and rural areas in Henan. In most municipal 
regions, ozone concentrations were higher in urban areas than in rural 
areas (Fig. 4b), indicating that there were clearly differences in ozone 
concentrations between urban and rural areas. 

The annual mean AOT40 during the wheat growing season in Henan 

was 6.25 ppm h, 4.32 ppm h, 5.26 ppm h, and 6.87 ppm h from 2015 to 
2018, respectively. Figs. 5a and 6 show that AOT40 had large spatial and 
temporal variations at the county level during 2015–2018. The counties 
with highest annual mean AOT40 (7.23–8.21 ppm h) were distributed in 
northeast of Henan (Fig. 5a), but the western and southeast counties had 
lower AOT40 (≤ 4.29 ppm h) than other counties. In 2015, the counties 
with highest AOT40 (> 8 ppm h) were mainly distributed in northeast 
Henan and the AOT40 in most counties was higher than in 2016 and 
2017. The AOT40 was lowest (≤ 5 ppm h) over all the counties in 2016, 
but then it showed an increasing trend year by year until 2018 (Fig. 6). 
The AOT40 in some counties of northeastern Henan exceeded 8 ppm h 
(Fig. 6a, c, and d). 

3.3. Wheat yield and economic losses 

Figs. 5b and 7 show that there were large spatial and temporal var
iations in WRYL in Henan during the period of 2015–2018. In general, 
WRYL was higher in eastern than that in western Henan counties 
(Figs. 5b and 7) and the highest WRYL counties (14.8–16.8%) were 
distributed in northeast Henan (Fig. 5b). All counties had lowest WRYL 
in 2016 compared with other three years (Fig. 7), but WRYL over most 
counties has been increasing year by year since 2016. The WRYL in some 
counties of eastern Henan can be up to 15% or more in 2015, 2017, and 
2018 (Fig. 7a, c, and d). Moreover, the WRYL exceeded 13% in most 
counties of Henan in 2018. 

The mean WP was 3606.63 ✕ 104 metric tons during 2015–2018 in 
Henan. The mean WPL and EL due to the ground level O3 exposure were 
509.91 ✕ 104 metric tons (accounting for around 14% of the total wheat 
production) and 1825.73 million US dollars, respectively. The WPL and 
EL decreased in 2016 compared with them in 2015, but they showed an 
increasing inter-annual variation year by year from 2016 to 2018 (WPL: 
371.24 ✕ 104 metric tons (2016); 482.00 ✕ 104 metric tons (2017); 
621.68 ✕ 104 metric tons (2018); EL: 1318.57 million US dollars (2016); 
1683.03 million US dollars (2017); 2161.22 million US dollars (2018)) 

Fig. 2. The spatial distribution of annual mean O3 concentration during 2015–2018.  
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(Fig. 8). Figs. S4 and S5 show the spatiotemporal variations of WPL and 
EL induced by the O3 exposure at the county level during 2015–2018. 

4. Discussion 

Ground-level ozone has been used as one of the most primary air 
pollutants and its annual mean ground level O3 has exceeded 0.04 ppm 
in many areas of the world (Paoletti et al., 2014; Zhao et al., 2018), 
causing severe negative impacts on crops production (Zhao et al., 2018, 
2020; Hu et al., 2020) and showing a clearly upward trend over the past 
several decades (Gilge et al., 2010; Zhao et al., 2018; Liu et al., 2020). To 
quantify the impacts of O3 pollution on crops, numerous studies have 
reported the evaluation of crops for yield and economic losses because 
the ground-level O3 exposure (Lin et al., 2018; Zhao et al., 2018, 2020; 
Feng et al., 2019a, 2019b; Hu et al., 2020). The O3 data adopted in these 
studies were mainly obtained from atmospheric chemistry transport 
models (Dingenen et al., 2009; Avnery et al., 2011b; Tang et al., 2013; 
Sicard et al., 2017; Lin et al., 2018) or O3 observations (Zhao et al., 2018, 
2020; Feng et al., 2019b). 

The quality of O3 data can directly determine the accuracy of the 
assessment of RYL induced by the ground-level O3 exposure. Many 
studies have found that there are large spatial and temporal variations 
for O3 concentrations in urban and rural/suburban regions (Dueñas 
et al., 2004; Xu et al., 2011; Guerreiro et al., 2014; Sicard et al., 2016, 
2017). Although some studies adopted O3 measurements to assess the 
impacts of ground-level O3 pollution for crops yield losses, these studies 
may over-/under-estimate the crop yield losses due to the O3 observa
tion sites are often located in cities. The O3 simulations based on at
mospheric transport models, such as WRF/Chem, WRF/CMAQ, etc., still 
have uncertainties due to the uncertainties in emission inventories, 
meteorological simulations, or chemical mechanisms, but these models 
can capture the spatial and temporal disparities in urban and rural/
suburban areas. The O3 data adopted in this study were simulated by 
WRF/Chem model. The mean bias of the hourly O3 simulations was 
− 0.002 ppm, which indicated that WRF/Chem model can well simu
lated the hourly O3 concentrations and be adopted to evaluate the im
pacts of surface ozone on losses of crop yields. 

We found that the ground-level O3 concentration in almost all 

Fig. 3. Maps of average daytime (08:00–18:00) O3 concentrations during wheat growing seasons in Henan from 2015 to 2018 (a, 2015; b, 2016; c, 2017; d, 2018).  
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counties of Henan has exceeded 0.04 ppm in the daytime during 
growing seasons from 2015 to 2018. In addition, the ground-level O3 
concentration represented an overall increasing trend in Henan during 
this period, which was consistent with previous studies (Lu et al., 2018; 
Zhao et al., 2020). The wheat production in Henan accounts for around 
1/4 of the whole country, and it is a very important major grain pro
duction area in China. This indicated that the potential risks of the 
ground-level O3 for crops in central China has become increasingly 
obvious in recent years. The AOT40 has been widely used as the expo
sure index that closely related to the losses of crop yields (Vingarzan, 
2004; Zhao et al., 2018, 2020; Hu et al., 2020). Our annual AOT40 
values ranged from 2 to 10 ppm h at the county level from 2015 to 2018, 
with the mean of 5.67 ppm h over Henan during this period. This result 
was relatively low compared with previous studies in regions of YRD and 
NCP and across China (Zhao et al., 2018; Feng et al., 2019b; Hu et al., 
2020). This may be due to the fact that the O3 concentration in Henan is 
lower than that in YRD, Beijing-Tianjin-Hebei region, and other regions 

(Lin et al., 2018; Feng et al., 2019b). Although our results have some 
uncertainties, the AOT40 was more reasonable because it was calculated 
based on the mean value of the O3 simulations within each county that 
takes into account the difference between urban and rural/suburban 
areas, rather than just using the measured O3 data of urban monitoring 
stations. 

In this study, we estimated WRYL and WPL based on the simulated 
AOT40 and the statistical WP at the county level in Henan, which can 
clearly show their spatial and temporal disparities. The county-level 
WRYL ranged from 4% to 21% during 2015–2018, with a mean of 
12.8%, 8.8%, 10.8%, and 14.1% for the period of 2015–2018, respec
tively, which associated with WPL of 564.72 ✕ 104 metric tons, 371.24 
✕ 104 metric tons, 482.00 ✕ 104 metric tons, and 621.68 ✕ 104 metric 
tons, respectively. These simulated-based estimations of WRYL was 
comparable with those of previous studies over different regions. 

Based on AOT40 response functions and measured/simulated O3 
data, several studies have reported the yield losses of crops caused by O3 

Fig. 4. Urban and rural regions map (a) and annual mean ozone concentration differences between urban and rural areas in Henan during 2015–2018 (b). The red 
shaded area is urban regions in Figs. (a). (JZ, Jiaozuo; PY, Puyang; ZZ, Zhengzhou; XY, Xinyang; ZMD, Zhumadian; SMX, Sanmenxia; KF, Kaifeng; PDS, Pingdingshan; 
XX, Xinxiang; ZK, Zhoukou; SQ, Shangqiu; XC, Xuchang; AY, Anyang; LH, Luohe; LY, Luoyang; HB, Hebi; NY, Nanyang). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Spatial distributions of mean AOT40 (a) and the relative yield loss of wheat (b) at the county level during 2015–2018.  
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exposure over different regions of China, such as NCP (17.1–30.8% 
during 2014–2017) (Feng et al., 2019b; Hu et al., 2020), YRD (26.4% in 
2015) (Zhao et al., 2018), Chongqing (12% in 2000) (Liu et al., 2009), 
Northwest-Shandong Plan (12.9% in 2012) (Zhu et al., 2015), and across 
China (17.1% in 2015 and 18.1% in 2016) (Feng et al., 2019b). The 
simulated WRYL in this study was lower compared with some previous 
studies reported over Henan, such as the estimated mean WRYL of 
Henan was around 40% during 2015–2018 (Zhao et al., 2020) and 
17.4% in 2016 (Feng et al., 2019b). This could be attributed to the 
differences between simulated and measured O3 data, between the 
length of the accumulated period of AOT40, and between the slope of 
AOT40 response functions. The simulated O3 data in this study were well 
consistent with measurements and can capture the difference between 
urban and rural areas. This may be more reasonable to describe the O3 
pollution level for each county, and then could reduce the uncertainty of 
the WRYL estimation. Zhao et al. (2018) took time window of 90 days as 
the accumulated period of AOT40, but the accumulated period of this 
study and Feng et al. (2019b) were the 44 days before and 30 days after 
the mid-anthesis date (75 days). This could explain why there was 
relatively lower WRYL in this study. 

Results of this study provide useful information for understanding 
the potential effects of O3 exposure on the winter wheat yield loss in 

Henan—a major area of wheat production in China with severe O3 
pollution. However, there are still some uncertainties in this study. First, 
although WRF/Chem model can capture the difference of ozone be
tween urban and rural/suburban areas, there still exist some un
certainties in the accuracy of O3 concentration simulations due to the 
limitations of emission inventories. This may underestimate or over
estimate the AOT40 and then affect the losses of wheat yields caused by 
O3 pollution. To increase the accuracy of surface O3 risk estimation, the 
spatial and temporal resolution of emission inventories should be 
improved and more rural O3 measurement stations should be built in the 
future. Next, the O3-based response function could influence the accu
racy of the WRYL estimation. The slope of the AOT40 response function 
adopted in this study may induce uncertainties for the assessment of 
WRYL due to it was parameterized by Zhu et al. (2011) based on OTC 
experiments in Jiangsu, China. In addition, the sensitivities of different 
cultivars to surface O3 exposure are different (Fiscus et al., 2005). It is 
difficult to estimate the yield losses of crops for different cultivars 
induced by ground-level O3 pollution because the scarce of experimental 
data for different cultivars in different regions of the world. Therefore, it 
is required to develop AOT40-response functions for the main cultivar of 
crop in specific regions. Third, the daytime window and the accumu
lated period for the calculation of AOT40 may cause some errors for 

Fig. 6. Maps of AOT40 in Henan at the county level during the wheat growing season (a, 2015; b, 2016; c, 2017; d 2018).  
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WRYL assessment due to their difference over different regions, and thus 
the definition of daytime window and accumulated window for specific 
regions should be considered in the future. Compared with AOT40, 
PODy considered both ozone pollution and hydrothermal conditions 
during crop growing seasons. It can better explain the effect of ozone 
pollution on crop yield from the perspective of crop growth mechanisms. 
Therefore, the PODy metric should be considered to evaluate the effects 
of ozone pollution on crop yields. Moreover, the cultivated area of 
winter wheat was obtained from statistical data at the county level, 
which can also enhance the uncertainties in the estimation of yield losses 
caused by ozone pollution. The fine spatial distribution of winter wheat 
should be considered in the estimation of effects of ozone pollution on 
crop yield losses by using crop mapping algorithms based on remote 
sensing images (Pan et al., 2021a, 2021b) in the future. 

5. Conclusions 

In this study, we assessed the losses of yield and economy of winter 
wheat caused by O3 exposure using WRF/Chem model simulated hourly 
ozone concentrations and the local AOT40-response functions in Henan 
of China during 2015–2018. We found that WRYL ranged from 4% to 
21% in Henan. The mean wheat losses of relative yield and total 

production was around 14% and 509.91✕104 metric tons during the 
period of 2015–2018, respectively, and associated with economic loss of 
1825.73 million US dollars. Although these results exist some uncer
tainty, it indicated that crops in China has been suffering high potential 
risk from the increasing surface O3 exposure due to the increasing O3 
concentrations. Therefore, the government should propose more 
reasonable and stringent emission reduction measures to reduce the O3 
concentration levels and ensure food security. 
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